One of the most important problems among the methodological issues discussed in cluster analysis is the identification of the correct number of clusters and the correct allocation of units to their natural clusters. The most widely used index to determine the optimal number of groups is the Calinski Harabasz index. As shown in this paper, the presence of atypical observations has a strong effect on this index and may lead to the determination of a wrong number of groups. Furthermore, in order to study the degree of belonging of each unit to each group it is standard practice to apply a fuzzy k-means algorithm. In this paper we tackle this problem using a robust and efficient approach based on a forward search algorithm. The method is applied on a data set containing performance evaluation indicators of Italian universities.

Robust fuzzy classification

Bini M;
2010-01-01

Abstract

One of the most important problems among the methodological issues discussed in cluster analysis is the identification of the correct number of clusters and the correct allocation of units to their natural clusters. The most widely used index to determine the optimal number of groups is the Calinski Harabasz index. As shown in this paper, the presence of atypical observations has a strong effect on this index and may lead to the determination of a wrong number of groups. Furthermore, in order to study the degree of belonging of each unit to each group it is standard practice to apply a fuzzy k-means algorithm. In this paper we tackle this problem using a robust and efficient approach based on a forward search algorithm. The method is applied on a data set containing performance evaluation indicators of Italian universities.
2010
978-3-642-03738-2
Forward search
Fuzzy clustering
Robust clustering
File in questo prodotto:
File Dimensione Formato  
Robust fuzzy classification.pdf

non disponibili

Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Chapter_Robust_Fuzzy_Classification.pdf

non disponibili

Dimensione 677.01 kB
Formato Adobe PDF
677.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14092/2660
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact