The high level of integration of international financial markets highlights the need to accurately assess contagion and systemic risk under different market conditions. To this end, we develop a quantile graphical model to identify the tail conditional dependence structure in multivariate data across different quantiles of the marginal distributions of the variables of interest. To implement the procedure, we consider the Multivariate Asymmetric Laplace distribution and exploit its location-scale mixture representation to build a penalized EM algorithm for estimating the sparse precision matrix of the distribution by means of an L1 penalty. The empirical application is performed on a large set of commodities representative of the energy, agricultural and metal sectors.

Graphical Models for Commodities: A Quantile Approach

Luca Merlo;
2022-01-01

Abstract

The high level of integration of international financial markets highlights the need to accurately assess contagion and systemic risk under different market conditions. To this end, we develop a quantile graphical model to identify the tail conditional dependence structure in multivariate data across different quantiles of the marginal distributions of the variables of interest. To implement the procedure, we consider the Multivariate Asymmetric Laplace distribution and exploit its location-scale mixture representation to build a penalized EM algorithm for estimating the sparse precision matrix of the distribution by means of an L1 penalty. The empirical application is performed on a large set of commodities representative of the energy, agricultural and metal sectors.
2022
978-3-030-99637-6
EM Algorithm
Energy Commodities
Graphical Models
Multivariate Asymmetric Laplace Distribution
File in questo prodotto:
File Dimensione Formato  
Foroni_Graphical-Models_2022.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 126.2 kB
Formato Adobe PDF
126.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Foroni_Bookmatter-MathematicalAndStatisticalMeth_2022.pdf

non disponibili

Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 159.24 kB
Formato Adobe PDF
159.24 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14092/3592
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact