In this paper we develop the unconditional M-quantile regression for modeling unconditional M-quantiles in the presence of covariates. Extending the paper by Firpo et al. (2009), we assess the impact of small changes in the explanatory variables on the M-quantile of the unconditional distribution of the dependent variable by running a mean regression of the recentered influence function of the unconditional M-quantile on the covariates. The proposed methodology is applied on the Survey of Household Income and Wealth (SHIW) 2016 conducted by the Bank of Italy.

Unconditional M-quantile regression

Luca Merlo
;
2021-01-01

Abstract

In this paper we develop the unconditional M-quantile regression for modeling unconditional M-quantiles in the presence of covariates. Extending the paper by Firpo et al. (2009), we assess the impact of small changes in the explanatory variables on the M-quantile of the unconditional distribution of the dependent variable by running a mean regression of the recentered influence function of the unconditional M-quantile on the covariates. The proposed methodology is applied on the Survey of Household Income and Wealth (SHIW) 2016 conducted by the Bank of Italy.
2021
978-88-5518-340-6
Influence function
M-estimation
RIF regression
Robust method
File in questo prodotto:
File Dimensione Formato  
Merlo_Unconditional-CLADAG_2021.pdf

non disponibili

Licenza: Creative commons
Dimensione 757.19 kB
Formato Adobe PDF
757.19 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14092/3594
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact