In this paper we develop a quantile graphical model to identify the tail conditional correlation structure in multivariate data across different quantiles of the marginal distributions of the variables of interest. To implement the procedure, we consider the Multivariate Asymmetric Laplace distribution and exploit its location-scale mixture representation to build a penalized EM algorithm for estimating the sparse precision matrix of the distribution by means of an L1 penalty. The empirical application is performed on a set of market indexes, cryptocurrencies and commodities.

Analyzing the Correlation Structure of Financial Markets Using a Quantile Graphical Model

Merlo Luca;
2022-01-01

Abstract

In this paper we develop a quantile graphical model to identify the tail conditional correlation structure in multivariate data across different quantiles of the marginal distributions of the variables of interest. To implement the procedure, we consider the Multivariate Asymmetric Laplace distribution and exploit its location-scale mixture representation to build a penalized EM algorithm for estimating the sparse precision matrix of the distribution by means of an L1 penalty. The empirical application is performed on a set of market indexes, cryptocurrencies and commodities.
2022
9788891932310
EM Algorithm, Cryptocurrencies, Graphical Models, Multivariate Asymmetric Laplace Distribution
File in questo prodotto:
File Dimensione Formato  
Foroni_Analyzing-SIS_2022.pdf

accesso aperto

Descrizione: Documento
Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 598.04 kB
Formato Adobe PDF
598.04 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14092/3922
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact