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Foreword

This volume contains the proceedings of the Fifth mini symposium

of the Roman Number Theory Association. The conference was held

on April 10-12, 2019 at the Università degli Studi Roma Tre. As well

as for the fourth Symposium, the duration was of three days and we

also hosted, as a satellite conference, the 13th PARI/GP Atelier.

As organizers of the symposium, and promoters of the associa-

tion, we would like to thank the main speakers, as well than the

participants who presented a contributed talk, for the high scien-

tific contribution o↵ered, and the ”scribas” who wrote these notes.

We also thank the funding bodies, and among them the Università

Europea di Roma and the Università Roma Tre for their support.

The Roman Number Theory Association

The idea of creating this association stems from the desire to bring

together Roman researchers who share interest in number theory.

This conference, whose proceedings are collected here, represents

the evidence of our goal: to be a key player in the development of

a strong Roman community of number theorists, to foster a spe-

cific scientific program but also, and more importantly, to create

a framework of opportunities for scientific cooperation for anyone

interested in number theory. Among these opportunities we can en-

list the Scriba project as well as the international cooperation with
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developing countries and the support of young researcher in num-

ber theory with special regards to those coming from developing

countries.

The association, even tough founded and based in Rome has an

international spirit and we strongly believe in international cooper-

ation.

Our statute is available on the association’s website (www.rnta.eu)

and it clearly states that our e↵orts and our funds will be devoted

entirely to the development of Number Theory. This will be achieved

in several ways: by directly organizing events - an annual symposium

in Rome as well as seminars distributed over the year; by participat-

ing and supporting, both scientifically and financially, workshops,

schools and conferences on the topics of interest; by creating a fund

to subsidize the participation of young Italian number theorists and

mathematicians from developing countries to the activities of the

international scientific community.

The Scriba project

The proceedings of a conference usually collect the most significant

contributions presented during the conference. The editorial choice,

in this case, as for the proceedings of the First, the Second and

Third Mini Symposium, was slightly peculiar. In the weeks before

the symposium, we identified a list of PhD students and young re-

searchers to whom we proposed to carry out a particular task: that

one of the ”scriba”. Each young scholar was then paired with one

of the main speakers and was asked to prepare a written report on

the talk of the speaker he was assigned to. Of course in doing so

the scribas had to get in contact with speakers after the conference

in order to get the needed bibliographical references as well as some

insight on the topic in question. We would like to highlight that

both the speakers and scribas joined the project enthusiastically.

The reasons for this choice lies in the most essential aim of our

Association: introducing young researchers to number theory, in all
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its possible facets. The benefits of this project were twofold: on one

hand, the scribas had to undertake the challenging task of writing

about a topics di↵erent from their thesis or their first article subject

and learn about a new possible topic of research and, on the other,

they had the possibility to collaborate with a senior researcher and

learn some trick of the trade.

The manuscripts were approved by the speakers and lastly re-

viewed by the editors of the present volume.

1 Report on RNTA Activities

In the last years, the Roman Number Theory Association has been

involved in many di↵erent activities, even if, clearly, our program was

badly a↵ected by the pandemic. We have been forced to postpone

the Sixth mini Symposium of the association any many conferences

and research schools. We are now restarting our activities and trying

to make up for lost time. Indeed, the Association collaborated in

various ways to several events, namely:

• Leuca2022, Celebrating Claude Levesque’s, Damien Roy’s and
Michel Waldschmidt’s birthdays to be held on May 16-21,

2022, Marina di San Gregorio, Pat (Lecce), Italy;

• 13th Atelier PARI/GP, Universit Roma Tre, April 8-9, 2019;

• The Twelfth International Conference on Science and Mathe-
matics Education in Developing Countries, The National Uni-

versity of Laos, Laos, held in November 2019;

Another very important engagement of the association was in the

participation in some CIMPA schools. The main idea of CIMPA

Schools, supported by UNESCO, perfectly espouses one of the cen-

tral aspects of RNTA, namely organisation and funding of scientific

and educational activities in Developing Countries. The most recent

(or future) CIMPA school we are involved in are the following:
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• CIMPA research school on Algebra, arithmetic and applica-
tions, Institut de Mathématiques et de Sciences Physiques,

Dangbo, Bénin June, 12-24 2022

• CIMPA research school on Introduction to Galois represen-
tations and modular forms and their computational aspects ,
University of the Philippines Diliman January 10-21, 2022

• WAMS School Topics in commutative algebra , University of

Sulaimani, Sulaimani, Kurdistan Region, Iraq , Spring 2022

• WAMS School Topics in algebraic number theory, Salahaddin
University, Erbil, Kurdistan Region, Iraq, Spring 2022

• Senegal EMA school on Introduction to Number Theory,
Cryptography and related courses, African Institute of Math-

ematical Sciences (M’bour) Senegal September 6 - 19, 2021

• CIMPA research school on Group Actions in Arithmetic and
Geometry, Universitas Gadjah Mada Yogyakarta, Indonesia

February 17-28, 2020

• CIMPA research school on Algebraic Geometry, Number The-
ory and Applications in Cryptography and Robot kinematics,
AIMS-Cameroon, Limbe. July 2-13, 2019

• WAMS research school on Introductory topics in Number
Theory and di↵erential Geometry, King Khalid University, Abha,
Saudi Arabia, June 16-23, 2019

• CIMPA research school on Elliptic curves: arithmetic and
computation. Universidad de la Repblica, Montevideo, Uruguay,

February 11 - 22, 2019.

The Association also supports the Nepal Algebra Project. This

is a course on Fields and Galois Theory at the Master of Philosophy

(M.Phil) and master level (M.Sc.) at Tribhuvan University, Kirtipur,

Kathmandu, Nepal.
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The project has a span of six years starting with the summer of

2016, ending with the summer of 2021. Each of the six years one

course of 50 hours will be o↵ered at Tribhuvan University by several

lecturers from developed countries.

During the years, the RNTA, collaborates with many institutions,

here the list of our main partners:

1. International Center for Pure and Applied Mathematics (CIMPA);

2. Istituto Nazionale di Alta Matematica ”F. Severi” (INDAM);

3. Abdus Salam International Centre for Theoretical Physics (ICTP);

4. Ministero degli A↵ari Esteri e della Cooperazione Internazionale

(MAECI);

5. Foundation Compositio Mathematica, The Netherlands;

6. Number Theory Foundation (NTF);

7. Centre national de la recherche scientifique (CNRS);

8. International Mathematical Union (IMU);

9. Algebra, Geometry and Number Theory, Erasmus Mundus

(ALGANT);

10. Università Roma TRE;

11. Università Europea di Roma.

Fabrizio Barroero, Dipartimento di Matematica e Fisica,
Università Roma Tre
email: barroero@mat.uniroma3.it

Marina Monsurrò, Università Europea di Roma
email: marina.monsurro@unier.it
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Francesco Pappalardi, Dipartimento di Matematica e
Fisica, Università Roma Tre
email: pappa@mat.uniroma3.it

Valerio Talamanca, Dipartimento di Matematica e Fisica,
Università Roma Tre
email: valerio@mat.uniroma3.it

Alessandro Zaccagnini, Dipartimento di Scienze Mate-
matiche, Fisiche ed Informatiche, Università di Parma
email: alessandro.zaccagnini@unipr.it
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PROCEEDINGS OF THE
ROMAN NUMBER THEORY ASSOCIATION
Volume �, Number �, March ����, pages �-�

Cécile Armana

Sturm bounds for automorphic
forms of Drinfeld type over

function fields
Written by Dario Antolini

The aim of this proceeding is to explain a theorem of Armana and

Wei about the Sturm bound for harmonic cochains. Since harmonic

cochains are "characteristic-p analogue" of modular forms, we first

introduce the Sturm bound in this classical setting.

As many introductory courses teach, a modular form f of weight an

integer number k for the subgroup �0(N), denoted f 2 Mk(�0(N)), has

a Fourier expansion of the form:

f (z) =
+1’
n=0

cn( f )qn,

where q := e2i⇡z
for z 2 H := {z 2 C : Im(z) > 0}.

Since the sum is infinite, one can wonder if there exists some bound

on the number of coe�cients needed to determine such modular form,

and whenever the answer is positive to find a good estimate.

Sturm gave a positive answer to the above question ([4, Theorem 2]).

Theorem 1 Let f 2 Mk(�0(N)).
If cn( f ) = 0 for any 0  n  k

12
[SL2(Z) : �0(N)], then f ⌘ 0.
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Proof. Let us sketch some elements of the proof.

1. Case N = 1: for f 2 Mk(SL2(Z)), f , 0, use the valence (or

k
12

-) formula (e.g., see [3, Ch.VIII, Thm.3]):

v1( f ) +
’

P2SL2(Z)\H

vP( f )
eP

=
k
12
,

where vP( f ) is the order of f at P, v1( f ) is the order of its

Fourier expansion at q = 0 and eP are certain positive integers.

Thus, v1( f )  k/12.

2. Case N > 1: write SL2(Z) =
–M

i=1
�0(N)yi, where M = [SL2(Z) :

�0(N)], put f̃ =
ŒM

i=1
f |k[yi ] 2 MMk(SL2(Z)) and apply point 1.

⇤

Remark 2 The inequality is sharp, as we can check in the full level
case �0(1) = SL2(Z) and weight k = 12: there is just one non-zero
normalized cuspidal modular form, the so-called discriminant �.

For whom interested in computer implementations, there are some

commands for PARI/GP and Sage which compute the bound for any

f 2 Mk(�0(N)):

• PARI/GP: mfsturm([N,k])

• Sage: ModularForms(Gamma0(N),k).sturm_bound()

As a corollary, we get also a bound for the generators of the Hecke

algebra Tk(�0(N)) := C[Tn | n � 1] ⇢ End(Sk(�0(N))).

Corollary 3 The Hecke algebra Tk(�0(N)) is generated, as C-vector
space, by all the Hecke operators Tn with 1  n  k

12
[SL2(Z) : �0(N)].
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The idea of the proof is to use the perfect C-pairing

Sk(�0(N)) ⇥ Tk(�0(N)) ! C, ( f ,T) 7! c1(T f ).

Now, we move our attention to the function field (or Drinfeld) setting

with positive characteristic p > 0.

Let q be a power of p and replace the integers Z inside its fraction

field Q by the ring A := Fq[t] inside the field K := Fq(t); hence,

consider the completion K1 := Fq((1/t)) at the infinity place 1/t and its

algebraic closure K1. Since the extension K1/K1 has infinite degree,

the latter is no more complete, but still taking its completion C1 it

remains algebraically closed.

For an element N 2 A, also define:

�0(N) :=

⇢✓
a b
c d

◆
2 GL2(A) | c ⌘ 0 (mod N)

�
.

In this world, one can generalize the notion of modular forms in two

ways: via Drinfeld modular forms (case of equal characteristic with

values in C1) and via harmonic cochains (case of mixed characteristic

with values in C). In this exposé, we will use the second ones.

Before defining them, we need to introduce the Bruhat–Tits tree T of

PGL2(K1), a combinatorial version of the Poincaré upper-half plane.

If we denote by GL2(O1) (resp., by I1) the maximal compact subgroup

(resp., the Iwahori subgroup) of GL2(K1), where O1 is the ring of

integers of K1, define an oriented graph T as follows:

• vertices: V(T ) = GL2(K1)/K⇥
1 · GL2(O1);

• edges: E(T ) = GL2(K1)/K⇥
1 · I1;

• finallly, the orientation of the edges is given by the canonical map

o : E(T ) ! V(T ) which associates to each edge its origin.

It is a result of Serre ([2, Ch.II, Sec.1]) that T is indeed a (q+1)�regular

tree provided with a transitive action of G(K1) and an involution on
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the set of vertices E(T ) which takes an oriented edge e to its opposite

ē.

A harmonic cochain on T of level �0(N) is a function f : E(T ) ! C
satisfying:

1. (alternate) 8e 2 E(T ), f (e) + f (ē) = 0;

2. (harmonic) 8v 2 V(T ), Õo(e)=v f (e) = 0;

3. (�0(N)�left invariance) 8� 2 �0(N), 8e 2 E(T ), f (�e) = f (e).

Moreover, we say that f is cuspidal if f is finitely supported on

E(�0(N)\T ). The space of harmonic cochains (resp., cuspidal) of level

�0(N) is a C-vector space denoted by H(�0(N)) (resp., Hc(�0(N))), and

it is finite dimensional as in the classical case.

For commodity of the discussion, let’s fix a uniformiser ⇡ = 1/t of

O1 = Fq[[1/t]] and a set of representatives for the set of positive edges

E+(T ): ⇢✓
⇡r u
0 1

◆
| r 2 Z, u 2 K1/⇡�rO1

�
.

The harmonic cochains admit a Fourier expansion similar as in the

classical case: for f 2 H(�0(N)), r 2 Z and u 2 K1, we can write

f
✓
⇡r u
0 1

◆
= q�r+2

©≠≠≠
´
co( f ) +

’
monic m2A
degmr�2

cm( f ) (mu)
™ÆÆÆ
¨

(1)

where cm( f ) = qdegm
Ø
A\K1

f
✓
⇡degm+2 u

0 1

◆
 (�mu) du and : K1 !

C
⇥

is an additive character.

Therefore, one can ask for a good Sturm bound for harmonic cochains,

namely to find a (hopefully sharp) integer B for which it is enough to

consider the coe�cients cm( f ) with deg m  B. In general, one can

hope to adopt the proofs of the classical case in this setting, but this is

4



not the case: we don’t have either a valence formula and a Riemann–

Roch theorem for finite graphs as good as the classical modular curves.

However, what we have is a very good knowledge of the quotient graph

�0(N)\T (a combinatorial analogue of the modular curve, see e.g. [2]

and [1]).

In fact, the approach of Armana and Wei is to find a set S of matrices

of the form g =

✓
⇡r u
0 1

◆
with 0  r  B (for some B) such that any

harmonic cochain f 2 Hc(�0(N)) is uniquely determined by its values

on the classes {[g]}g2S in E(T ). Thus, from the Fourier expansion (1)

one get the Sturm bound: deg m  B � 2.

After the work of Gekeler–Nonnengardt, one can obtain the set

S =
⇢✓
⇡r ⇤
0 1

◆
| 0  r  3 deg N � 3

�
, because it trivially contains the

support of cochain f . Hence, we get a first Sturm bound:

deg m  3 deg N � 5.

The result of Armana and Wei improves this estimate.

Theorem 4 (Armana-Wei) Let f 2 Hc(�0(N)).
Assume that cm( f ) = 0 for any monic m 2 A and:

1. deg m  2 deg N � 4 if N is arbitrary;

2. deg m  deg N � 2 if N is squarefree and f is a newform;

3. deg m  deg N � 2 if N = Pl with P irreducible;

4. deg m  deg N � 1 if N = Pl1
1
· · · Pls

s with P1, . . . , Ps irreducible
and s  q.

Then f ⌘ 0.

The main tools of the proof are harmonicity, Atkin–Lehner involutions,

Gekeler–Nonnengardt results and pigeon-hole principle.
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Remark 5 The bounds (2), (3) and (4) are optimal.
For the general bound, the expected optimal bound is deg N + cst.

As in the classical case, we get for free a Sturm bound for the Hecke

operators.

Define T(�0(N)) = C[Tm | m monic in A] ⇢ End(Hc(�0(N))). Us-

ing the perfect C-pairing

Hc(�0(N)) ⇥ T(�0(N)) ! C, ( f ,T) 7! c1(T f ),

we get:

Corollary 6 The Hecke algebra T(�0(N)) is generated as C-vector
space by the Hecke operators Tm with m 2 A monic and:

1. deg m  2 deg N � 4 if N is arbitrary;

2. deg m  deg N � 2 if N = Pl and P irreducible;

3. deg m  deg N � 1 if N = Pl1
1
· · · Pls

s with P1, . . . , Ps irreducible
and s  q.
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Volume �, Number �, March ����, pages �-��

Yuri Bilu

Singular units do not exist

Written by Francesco Campagna

1 What are singular moduli?

A singular modulus is the j-invariant of an elliptic curve defined
over C with complex multiplication. Equivalentely, if H denotes the
Poincaré half plane and j : H ! C is the usual modular j-function
with q-expansion:

j(z) = 1
q
+ 744 + 196884q + . . . q = e2⇡iz,

then a singular modulus is a value j(⌧), with ⌧ 2 H imaginary quadratic.
Notice that every imaginary quadratic ⌧ 2 H defines a lattice [1, ⌧] =
Z + Z⌧ ✓ C which is homothetic to a proper fractional ideal of a
unique order O⌧ in an imaginary quadratic field. Then the elliptic
curve associated to the quotient C/[1, ⌧] has complex multiplication
precisely by the order O⌧ .

Fix ⌧ 2 H imaginary quadratic and let

f (T) = aT2 � bT + c 2 Z[T]

be the minimal polynomial of ⌧ over Z. We define the discriminant of
the singular modulus x := j(⌧) as

�x := disc f (T) = b2 � 4ac.
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This is also equal to the discriminant of the order O⌧ defined above. It
is clear from the definition that the discriminant of a singular modulus
is a negative integer congruent to 0 or 1 modulo 4. On the other hand,
for any negative integer � ⌘ 0, 1 mod 4 there exists a unique quadratic
order O� of discriminant �; if we view the proper fractional ideals of
this order as lattices in C and we compute their j-invariants, we obtain
precisely all the singular moduli of discriminant �. It is clear that two
proper fractional ideals are in the same ideal class if and only if they
are homothetic as lattices in C. Hence all the proper ideals in the same
ideal class will give rise to the same singular modulus. We conclude
that for any negative integer � ⌘ 0, 1 mod 4 there are precisely C(�)
singular moduli of discriminant �, where C(�) is the class number of
the unique order of discriminant �.

However, one could prove even more: singular moduli of discrimi-
nant � are algebraic integers of degree C(�) and they form a full Galois
orbit over Q. This fact will be heavily used in what follows.

2 Finitness of singular units: a proof by Habegger

A well-known theorem of André (see [1]) asserts that, apart from some
“obvious” exceptions, equations of the form f (x, y) = 0 for f 2 C[x, y]
have finitely many solutions ( j1, j2)with j1 and j2 both singular moduli.
However, the proof of this result is not e�ective and in recent years
many e�orts have been done in order to obtain e�ective results on
special families of equations. In particular in [3] it is shown that the
equation xy = 1 has no solution in singular moduli. Motivated by this
result, D. Masser asked whether it is possible that a singular modulus
can be a unit in the ring of algebraic integers. Such a singular modulus
will be called a singular unit.

A first answer to this question has been given by P. Habegger in [7],
where it is proved the following

Theorem 2.1 There exist at most finitely many singular units.

10



In what follows we will try to give an overview of the proof of this
result.

The idea is, given a singular unit x of discriminant �, to provide an
upper and a lower bound for its Weil height h(x) which contradict each
other when |�| is su�cently large. From some results of Colmez and
Nakkajima-Taguchi on the stable Faltings height of a CM elliptic curve
(see [5] and [9] respectively) one gets the lower bound

h(x) � c1 log |�| � c2 c1, c2 > 0. (1)

As far as the upper bound is concerned, the author proceeds as follows:
since x�1 is an algebraic integer, the finite places do not contribute to
the computation of its Weil height. Hence we can write:

h(x) = h(x�1) = 1
C(�)

’
1kC(�)

log+ |x�1
k |. (2)

where, for every k = 1, ...,C(�), the xk are the Galois conjugates of
the singular modulus x. We have then to control the conjugates that
are small in absolute value. Fix 0 < " < 1 and let F be the usual
fundamental domain for the action of SL2(Z) on the Poincaré half
plane. Note that for every k = 1, ...,C(�) there is a unique ⌧k 2 F for
which xk = j(⌧k). Define the “cat’s ears” as

U" := {z 2 F : min{|z � ⇣6 |, |z � ⇣3 |} < "}

where ⇣6 = e
2⇡ i

6 and ⇣3 = e
2⇡ i

3 . Notice that the ⌧k 2 U" give rise to
singular moduli xk of small absolute value since ⇣6 and ⇣3 are zeros of
the j-function. By splitting the sum in formula (2) as

h(x) = 1
C(�)

’
⌧k 2U"

log+ |x�1
k | + 1

C(�)
’

⌧k<U"

log+ |x�1
k |

and by estimating separately the two sums, the author gets

h(x)  C"(�)
C(�) c3 log |�| + 3 log "�1 + c4 (3)

11



where C"(�) = #({⌧1, ..., ⌧k}\U") and c3, c4 are positive real constants.
Hence, in order to conclude, one has to bound the quantity C" (�)

C(�) . Here
Habegger uses Duke-Clozel-Ullmo equidistribution (see [4] and [6]) to
prove that, for |�| su�ciently large, one has

C"(�)
C(�) ⌧ "2.

With this estimate, for |�| su�ciently large, the height h(x) can be
bounded from below and from above by

c1 log |�| � c2  h(x)  c"2 log |�| + 3 log "�1 + c4

and, by choosing " properly, one gets a contradiction for |�| large
enough. This implies that there are finitely many singular units.

3 No singular modulus is a unit

As we have seen in the previous paragraph, the proof of the finitness of
singular units is not e�ective since it relies on an equidistribution result.
Recently however, Yu. Bilu, P. Habegger and L. Kühne managed to
prove in [2] the following

Theorem 3.1 Singular units do not exist.

Roughly speaking, this result is achieved by carrying out an e�ective
version of the proof contained in [7] (and sketched above) and by
improving the obtained bounds in order to be able to use computer
assisted techniques.

The first step is to explicitely describe those ⌧ 2 H such that j(⌧) is
a singular modulus of fixed discriminant �. For such a � define T� as
the set of triples of integers (a, b, c) such that

gcd(a, b, c) = 1, � = b2 � 4ac
either � a < b  a < c or 0  b  a = c.

12



A theorem of Gauss then asserts that

{⌧1, ..., ⌧m} =
(

b +
p
�

2a
: (a, b, c) 2 T�

)

is precisely the set of complex numbers ⌧ in H such that j(⌧) is a
singular modulus of discriminant �. In this setting m = C(�) and the
number C"(�) is precisely the number of triples (a, b, c) 2 T� such that
⌧ = ⌧(a, b, c) satisfies min{|⌧ � ⇣6 |, |⌧ � ⇣3 |} < "}.

By using the explicit description above, the authors manage to prove
that

C"(�)  |�| 1
2+o(1) · " + |�|o(1). (4)

Combining this estimate with the inequality (3) and optimizing ", they
deduce that the height of a singular modulus x of discriminant � is
e�ectively bounded by

h(x) ⌧ |�|o(1)
C(�) + log

|�| 1
2

C(�) + o(log |�|) (5)

all the implicit constants being explicitely computable. This removes
the ine�ectivity of the upper bound that was present in Habegger’s
proof.

As far as the lower bounds for h(x) are concerned, the authors prove
the following two inequalities:

(HL) h(x) � 3p
5

log |�| � 9.79.

(EL) h(x) � ⇡ |� |
1
2 �0.01

C(�) .

The first estimate is an improvment of inequality (1), improvment
needed due to numerical purposes. The second estimate follows essen-
tially from the definition of Weil height and from the explicit description
of singular moduli seen above.
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By combining (5)+(HL) when C(�) is big, while using (5)+(EL)
when C(�) is small, the authors conclude that, if a singular unit exists,
its discriminant is bounded by

|�| < 1015.

However this bound is still too big to allow numerical computations.
Hence the rest of the proof is dedicated to refining the bound above.
First, the range 1010  |�| < 1015 is ruled out by sharpening estimate
(4) on C"(�); the techniques used in this step are a combination of ana-
lytic number theory and numerical computations on SAGE. The range
|�| < 1010 is then studied by further computer-assisted arguments. The
conclusion is that singular units do not exist.
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1 Introduction

Let K be a number field. An elliptic curve over K is a nonsingular
projective cubic curve with a�ne equation

E/K : Y
2 = X

3 + AX + B, where A, B 2 K .

The set of its K-rational points E(K) has a natural group structure with
the point ‘at infinity’ (0 : 1 : 0) in P2

(K) taken as its zero element. In
fact, the Mordell-Weil theorem asserts that E(K) is a finitely generated
abelian group, so we can write it as follows:

E(K) � E(K)tor � Z
r .

The torsion subgroup E(K)tor consists of the points of finite order in
E(K) and the number r is the free rank of E(K).

We go back to the a�ne equation of the elliptic curve. We take
A, B 2 OK integral and define the discriminant �E of the elliptic curve
E as 16 times the discriminant of the cubic polynomial on the right
hand side of the equation. More explicitly,

�E = �16
⇣
4A

3 + 27B
2
⌘
.
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The discriminant is a value that helps determine whether an elliptic
curve remains nonsingular or becomes singular after reducing the coef-
ficients of its a�ne equation modulo a prime p ⇢ OK . In particular, if p
is a prime that does not divide �E , then we get a nonsingular reduction
of E and we call p a prime of good reduction. On the other hand, if p
divides �E , then E reduces to a singular curve and we call p a prime
of bad reduction. The j-invariant of an elliptic curve is defined to be

j(E) = 1728 ·
64A

3

�E
.

Two elliptic curves over K are isomorphic over the algebraic closure
K if and only if their j-invariants are the same. So the j-invariant
partitions the collection of all elliptic curves over K into isomorphism
classes over K .

Consider a prime of good reductionp in the ring of algebraic integers
OK of K , and let kp = OK/p be the residue class field, which is finite
of order Np. The group of points of the reduction E(kp) is a finite
abelian group of order Np + 1 � ap, where |ap |  2

p
Np. This bound

for the order of E(kp) follows from the Hasse-Weil theorem. Now the
group E(kp) has at most two generators, and so a natural question to
ask is how many such reductions are cyclic. If the answer happens to
be infinite, it is natural to ask whether these primes form some fraction
of the full set of primes in OK . This means computing, if it exists, the
limit

�cyc = lim
n!1

a(n)

⇡K (n)
,

where a(n) is a function that counts the number of primes p 2 OK with
norm N(p)  n for which E(kp) is cyclic, and ⇡K (n) simply counts all
the primes in OK with norm at most n. If it exists, �cyc is a number
within [0, 1]. We refer to �cyc as the density of the set of primes of
cyclic reduction.

Number theory is riddled with various density problems such as the
one above. As an example, we take a look at Mersenne primes, which
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are prime numbers of the form 2p
� 1, where p is a prime. Although

its infinitude is still in question, because they are close to powers of 2,
there can only be at most log2 n of them up to n. If there are infinitely
many of them, then putting them up against the full set of primes gives
us a density of 0. Generally, computing a density is nontrivial. To
compute for a density, one often imposes splitting conditions in finite
Galois extensions for the primes one wishes to count, then use analytic
number theory compute an asymptotic limit.

2 Known results

Let p be a prime of good reduction. The injectivity of the reduction
modulo p map (cf. [9] Chapter VII.3 Proposition 3.1) tells us that if
E(K)tor is non-cyclic, that is, #E(K)[`] = `2 for some prime `, then
E(kp) is almost always non-cyclic. It is a fact that when #E(K)[`] = `2,
then E(K)[`] ✓ E(K), and this implies that the primitive `th-root of
unity ⇣` = e

2⇡ i
` is contained in K . For K = Q, this only happens for

` = 2. In this case, the necessary condition that E/Q does not have full
2-torsion is actually su�cient.

Theorem 1 (Gupta-Murty, 1990, [4]) Let E/Q be an elliptic curve.
E(Q) does not have full 2-torsion if and only if E(Fp) is cyclic for
infinitely many prime numbers p.

Over general number fields K , it is possible that E(K)tor is cyclic,
or even trivial, but E(kp) is non-cyclic for almost all p ([1], Theorem
4.1). Moreover, the proof of Theorem 1 does not tell us anything about
the density of the primes p for which E(Fp) is cyclic. And so instead
of generalizing Theorem 1 over arbitrary number fields, we proceed by
finding a way to describe the cyclicity of E(kp) in terms of the splitting
behavior of p in extensions of K , following Serre.

We denote by K` = K(E(K)[`]) the `-division field of E(K). One
can view K` as the smallest Galois extension of K over which the points
in E(K)[`] are defined.
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Lemma 1 Supposep is a prime ideal not dividing�E ·�K . Then E(kp)

is cyclic if and only if p does not split completely in K` for any prime
number `.

This lemma resembles Artin’s primitive root conjecture: let a be an
integer di�erent from �1 and let p be a prime not dividing 2a. Then a

is a primitive root modulo p, that is F⇤p = ha mod pi, if and only if p

does not split completely in any field F` = Q
�
⇣`,

p̀
a
�
. Here, F` is the

splitting field of X
`
� a over Q. Originally, Artin conjectured that the

density of primes p for which a is a primitive root modulo p is

�a =
÷
`�2

prime

✓
1 �

1
[F` : Q]

◆
. (1)

The idea of Artin was to fix a prime ` and compute the density of
primes that do not split completely in F` . This is precisely the value
1� 1

[F` :Q] . Assuming that the fields F` are linearly disjoint overQ, as in
the case for Artin’s original example when a = 2, then we can compute
the density of the primes p for which a is a primitive root modulo p

by taking the product of 1 �
1

[F` :Q] over all primes `. This results to
the naive density �a in (1). The problem is that the fields F` are in
general not linearly disjoint. For instance, when a = 5, then we have
F2 = Q(

p
5) and F5 = Q(⇣5,

5p5), hence F2 ⇢ F5. So if p does not split
in F2 then it does not split in F5 either.

Now one can take the dependencies between the fields F` into account
by correctly computing the degrees [Fn : Q] of their composita Fn, and
then obtaining the right conjectural density after an inclusion-exclusion
argument. This corrected statement was proved by Hooley under the
assumption of the generalized Riemann hypothesis.

Theorem 2 (Hooley, 1967, [5]) Let a 2 Z \ {�1} that is not a square.
Assuming the generalized Riemann hypothesis, F⇤p = ha mod pi for a
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set of primes p of density

�a =
1’
n=1

µ(n)

[Fn : Q]
,

where µ is the Möbius function.

Around a decade later, Serre proved an analog of Hooley’s theorem
for elliptic curves.

Theorem 3 (Serre, 1978, [8]) Let E/Q be an elliptic curve. Assuming
the generalized Riemann hypothesis, E(Fp) is cyclic for a set of primes
p of density

�cyc =

1’
n=1

µ(n)

[Kn : Q]
.

Here, Kn = Q(E(Q)[n]).

Campagna and Stevenhagen generalized this above theorem by Serre
to elliptic curves over arbitrary number fields [1]. In practice however,
this is still not entirely satisfying because the convergence of the sum
for �cyc is slow, and it is not clear when it is positive. Lenstra observed
that in the case of primitive root problems, the vanishing of densities is
always caused by incompatibility of conditions involving finitely many
fields F` [6].

3 Main results

Guided by Lenstra’s idea, Campagna and Stevenhagen singled out the
fields K` that prove to be problematic to the elliptic density. These
are the fields K` that can give rise to ‘entanglement’, meaning we get
non-linearly disjoint extensions K`/K . To treat these entanglements,
Theorem 3 is applied, otherwise, the naive density is computed.

21



Overall, there are two distinct cases depending on whether or not an
elliptic curve E/K has complex multiplication. Due to the existence of
the multiplication-by-n map, it is easy to see that Z may be embedded
into the endomorphism ring End(E) of E . For fields of characteristic
0, if End(E) is strictly larger than Z, then End(E) is isomorphic to an
order R ⇢ F, where F is an imaginary quadratic field. In this case we
say that E has complex multiplication by R.

Theorem 4 (Campagna and Stevenhagen, 2018, [1]) Let E/K be an
elliptic curve without complex multiplication. Then there exists an
integer N = N(E,K) 2 Z>0 such that �cyc can be factored as

�cyc =
’
m |N

µ(m)

[Km : K]

÷
`-N

prime

✓
1 �

1
[K` : K]

◆
.

We can take for N(E,K) any positive integer divisible by the product
of: the small primes 2, 3 and 5, the primes dividing the discriminant
�K of K , the primes dividing the norms of the primes of bad reduction
of E , and the primes ` for which the degree of K` is not maximal.

By Serre’s open image theorem [7], we know that for an elliptic curve
E/K without complex multiplication over the algebraic closure K , for
almost all ` 2 N, the map

⇢` : Gal(K`/K) ! GL2(F`)

is an isomorphism and K` has maximal degree # GL2(F`) = (`2�1)(`2�
`) over K . Group theoretical results and the Jördan-Holder theorem
show that for N as in the Theorem, the fields K` and KN are linearly
disjoint over K , making splitting in K` independent of splitting in KN .
This enables us to compute the density corresponding to the finitely
many fields K` where entanglements happen separately.
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KN K`

KN ·`

K

K(⇣`)

SL2(F`)

(Z/`Z)⇤

The case when E is an elliptic curve with complex multiplication
is di�erent because the fields K` , as we remarked earlier, may not be
linearly disjoint. To illustrate this case, consider the elliptic curve

E/Q : Y
2 = X

3
� 35X � 98 = (X � 7)(X2 + 7X

2 + 14).

Since K2 = Q(
p
�7) is the splitting field of X

3
� 35X � 98 over Q, E

does not have full 2-torsion.
There are 13 isomorphism classes of rational elliptic curves with

complex multiplication and their j-invariants correspond to the list of
orders of class number 1. So knowing that j(E) = �3375 tells us that
our E has complex multiplication by OK2 = Z

h
1+

p
�7

2

i
. In other words,

K2 coincides with the CM-field F = Q(
p
�7) of E . And since for any

prime ` � 3, we have F ⇢ K` , then the field K2 is always contained in
the field K` . As a consequence, if p does not split completely in K2,
then it also does not split completely in K` for any odd prime `.

From here we use Lemma 1 which says that the splitting of p in
Q(

p
�7) is a necessary and su�cient condition for the non-cyclicity of

E(Fp). This happens precisely when p ⌘ 1, 2, 4 (mod 7), and so we
have

E(Fp) is cyclic () p ⌘ 3, 5, 6 (mod 7).
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In this particular example, we can deduce that �cyc =
1
2 . In this case,

splitting in K2 is all we need to look at, so assuming that the generalized
Riemann hypothesis is true is not necessary.

When E/K has complex multiplication by some order O in an imag-
inary field F, the density is computed in two di�erent ways depending
on whether or not K contains the CM field F. We define

AO,` = 1 �
1

#(O/`O)⇥
=

8>>><
>>>:

1 � (` � 1)�2 if
�D
`

�
= 1,

1 � (`2 � 1)�1 if
�D
`

�
= �1,

1 � (`2 � `)�1 if
�D
`

�
= 0,

and call
AO =

÷
` prime

AO,`

the Artin constant of the order O. Using the Chebotarev Density theo-
rem, Campagna and Stevenhagen were able to formulate the following
results.

Theorem 5 (Campagna and Stevenhagen, [3]) Let E/K be an elliptic
curve with complex multiplication by an order O ⇢ K . Then the set of
primes of cyclic reduction of E has density

� cyc =
’

m |TE/K

µ(m)

[Km : K]
·

÷
`<TE/K

AO,` .

This case is reminiscent of Theorem 4, with TE/K being the integer
product of the conductor fO := [OF : O] 2 N of the order O, the
absolute discriminant �K 2 Z of the number field K , and the absolute
norm NK/Q := |OK/fE | 2 N of the conductor ideal fE ✓ OK of E .

When the field of definition K does not contain the CM field F,
it is no longer true that the family of division fields {K`}` for prime
` becomes linearly disjoint after removing a finite set of fields. The
previous example is an illustration of this case. There we saw an
instance wherein the CM field F is contained in K` for all primes
` � 3.
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Theorem 6 (Campagna and Stevenhagen, [3]) Let E/K be an elliptic
curve with complex multiplication by an order O with discriminant
�O < �4 in an imaginary quadratic field F and defined over K + F.
Write H2,O for the ray class field modulo 2 relative to the order O. Then
there exists a non-negative rational number cE/K 2 Q�0 such that:

1. If �O ⌘ 0 (mod 4), then either K is linearly disjoint from H2,O
over Q( j(E)) and

� cyc =
1
4
+

cE/K

2
· AO

or K \ H2,O ) Q( j(E)) and we have

� cyc =

(
0 if K = K2,
1
2 otherwise.

2. If �O ⌘ 5 (mod 8), then

� cyc =
1
2
+

cE/K

2
· AO .

3. If �O ⌘ 1 (mod 8), then � cyc = 1/2.
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The speaker presents a joint work with Je�rey Vaaler [1], in which

they extend a recent result of Dobrowolski and Smyth to establish a

sharp lower bound for the Mahler measures of polynomials in any

number of variables.

For a polynomial f (z) 2 C[z] that is not identically zero, the loga-

rithmic Mahler measure is defined as

m( f ) =
π

1

0

log

�� f (e2⇡it )
�� dt .

The classical Mahler measure is then defined as

M( f ) = exp(m( f )).

Let

f (z) = cN z
N + · · · + c1z + c0 = cN (z � ↵1) · · · (z � ↵N ). (1)
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Jensen’s formula implies that

M( f ) = exp(m( f )) = |cN |
N÷
n=1

max{1, |↵n |}. (2)

From (2), it immediately follows that if f (z) and g(z) are nonzero

polynomials in C[z], then

M( f g) = M( f )M(g).

The following result is a well-known lower bound due to Mahler.

Theorem 1 Let f (z) be a polynomial of degree N in C[z] given by (1).
Then

|cn |  M( f )
✓
N

n

◆
for each n = 0, 1, 2, . . . , N .

Note that, if f (z) = (z ± 1)k , then M( f ) = 1, so in this example we

have equality above.

The following result is due to Dobrowolski and Smyth (2016). Here,

the height H( f ) of a polynomial f is the maximum modulus of its

coe�cients.

Theorem 2 We have
M( f ) � H( f )

2k�1
,

where f (z) = a0z
n0 + · · · + ak�1z

nk�1 + ak 2 C[z] and n0 > n1 > · · · >
nk�1 > 0.

Assume that f (z) is a polynomial in C[z] that is not identically zero,

and assume that f (z) is given by

f (z) = c0z
n0 + c1z

n1 + · · · + cN z
nN , (3)

where N is a non-negative integer and n0, n1, . . . , nN are non-negative

integers such that

n0 < n1 < · · · < nN .
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The speaker presents the main result in which they establish a lower

bound for M( f ) which depends on the coe�cients and on the number

of monomials, but does not depend on the degree of f .

Theorem 3 (S. Akhtari, J. Vaaler (2018)) Let f (z) be a polynomial
in C[z] that is not identically zero, and is defined by (3). Then we have

M( f ) � |cn |�N
n

� , for all n, 0  n  N � 1.

A consequence of these results

Let f : R/Z! C be a trigonometric polynomial, not identically zero,

and a sum of at most N + 1 distict characters. Then, we can write f as

f (t) =
N’
n=0

cne(mnt), (4)

where c0, c1, . . . , cN are complex coe�cients, and m0,m1, . . . ,mN are

integers such that

m0 < m1 < · · · < mN .

Since f is not identically zero, the Mahler measure of f is a positive

number given by

M( f ) = exp

✓π
R/Z

log | f (t)|dt

◆
.

Corollary 4 Let f (t) be a trigonometric polynomial with complex co-
e�cients that is not identically zero, and given by (4). Then we have

|cn |  M( f )
✓
N

n

◆
for each n = 0, 1, 2, . . . , N .
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For positive integers M , the speaker states an extension of Corollary 4

to trigonometric polynomials

F : (R/Z)M ! C

that are not identically zero. The Fourier transform of F is the function

F̂ : ZM ! C,

defined at each lattice point k in ZM by

F̂(k) =
π
(R/Z)M

F(x)e(�kTx)dx.

Since F is not identically zero, the Mahler measure of F is a positive

number given by

M(F) = exp

✓π
(R/Z)M

log |F(x)|dx
◆
.

Assume thatS ✓ ZM is non-empty finite set that contains the support

of F. That is, assume that

{k 2 ZM : F̂(k) , 0} ✓ S,

and thus, F has the representation

F(x) =
’
k2S

F̂(k)e(kTx). (5)

If ↵ = (↵m) is a (column) vector in RM
, we write

'↵ : ZM ! R

for the homomorphism given by

'↵(k) = kT↵ = k1↵1 + · · · + kM↵M .
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It is easy to verify that '↵ is an injective homomorphism if and only

if the coordinates ↵1, . . . , ↵M are Q-linearly independent real numbers.

Let the nonempty, finite set S ✓ ZM have cardinality N + 1, where

0  N . If '↵ is an injective homomorphism, then the set

{'↵(k) : k 2 S}

consists of exactly N + 1 real numbers. It follows that the setS can be

indexed so that

S = {k0, k1, . . . , kN }, (6)

and

'↵(k0) < '↵(k1) < · · · < '↵(kN ) (7)

The following result is a generalization of Corollary 4.

Theorem 5 Let F : (R/Z)M ! C be a trigonometric polynomial that
is not identically zero, and is given by (5). Let '↵ : ZM ! R be
an injective homomorphism, and assume that the finite set S, which
contains the support of F̂, is indexed so that (6) and (7) hold. Then we
have

��F̂(kn)
��  M(F)

✓
N

n

◆
for each n = 0, 1, 2, . . . , N .
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1 The multiplication table

For any integer N > 1, one can consider the multiplication table, which
has N2 entries. Because of the symmetry relative to the diagonal,
the number of di�erent entries M(N) is actually smaller than N2. In
addition an integer might have several representations as a product of
two integers, for example 6 · 2 = 12 = 3 · 4 appears four times in the
multiplication table up to 10. Hence M(N) is even smaller, for instance
M(10) = 42. The natural question one may ask is how large M(N) is
with respect to N2.
In 1955 Erd�s proved that

M(N)
N2 ! 0 (1)

as N ! 1 and the basic idea in order to show this result can be
described as follows. Denoting with ⌦(n) the function that counts the
total number of prime factors of an integer n, we recall that ⌦(n) ⇠
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log log n for almost every n. Then an integer in the set {ab : a, b  N}
has typically log log N + log log N = 2 log log N prime factors. On
the other hand, a typical integer in {n : n  N2} has log log N2 =

log log N + log 2 prime factors. This means that, up to few exceptions,
the typical integer in the latter set does not belong to the former. Since
M(N) and N2 are the cardinality of these two sets respectively, (1)
follows.
In order to investigate the correct order of M(N), given an integer
N2

2  n < N2, one has to count the number of representations of n
as a product ab, with a, b  N . Notice that since n = ab one has
N
2 < a, b  N . Thus one is lead to the question of counting the divisors
of n in intervals of multiplicative length 2, i.e.

]{n : 9d |n , Y < d < 2Y }.
Showing that a typical integer does not have a divisor in a given dyadic
interval, in [1] Ford proved that

M(N) ⇣ N2

(log N)c(log log N)3/2
where c := 1 � 1 + log log 2

log 2
.

The results of this article also give that for almost all primes p such that
x
2 < p < x, one has that p � 1 does not have a divisor in a given dyadic
interval (Y, 2Y ), as Y goes to infinity with N .

2 Multiplicative functions in arithmetic
progressions

A classical problem in analytic number theory is that of estimating the
number ⇡(x; a, q) of primes up to x, which are congruent to a (mod q)
for some a, q with (a, q) = 1. If q is small, this is asymptotic to the total
number of primes up to x divided by the number of integers coprime
to q. In general one expects

⇡(x; a, q) � ⇡(x)
�(q) (2)
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to be small. As usual ⇡ denotes the counting function of primes and
� the Euler totient function. This is really di�cult to prove unless x
is large with respect to q but the Bombieri-Vinogradov theorem shows
that this is true on average, even if we pick the worst case for any
modulus and then we sum over q up to Q. Specifically, for any fixed
A > 0 there exists B = B(A) > 0 such that if Q  x1/2(log x)�B we
have ’

qQ
max
(a,q)=1

���⇡(x; a, q) � ⇡(x)
�(q)

��� ⌧ x
(log x)A . (3)

Roughly speaking, this theorem does not prove that (2) is small for
every arithmetic progression, but it shows that this is true on average.
Hence even if the approximation fails, it does not happen often.
This kind of analysis is still of great interest when we replace ⇡ with
any multiplicative function f such that | f (n)|  1. In this case one
wants to study ’

nx
n⌘a (q)

f (n) � 1
�(q)

’
nx

(n,q)=1

f (n) (4)

but unfortunately this is not always small. As we are going to see, there
are two obstructions towards the Bombieri-Vinogradov theorem for f

’
qpx(log x)�B

max
(a,q)=1

��� ’
nx

n⌘a (q)

f (n) � 1
�(q)

’
nx

(n,q)=1

f (n)
��� ⌧ x

(log x)A (5)

which measures how well f is well-distributed “on average” in arith-
metic progressions with moduli q  p

x(log x)�B.

Let’s analyze the first problem. If one picks f (n) = (n3 ) the quadratic
character (mod 3), then f is not well-distributed in arithmetic progres-
sions (mod q) if 3|q. Of course (4) is not small, since for instance in
the case a = 1 the first term is x

q while the second essentially vanishes.
In order to prove a Bombieri-Vinogradov type theorem, we need to
avoid this problem which appears when f is strongly correlated with
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a character of small conductor. By analogy with the classical proof of
the Bombieri-Vinogradov theorem, one can sort this problem out by
assuming a Siegel-Walfisz type theorem, i.e. if (a, q) = 1 then

’
nx

n⌘a (q)

f (n) � 1
�(q)

’
nx

(n,q)=1

f (n) ⌧A
x

(log x)A (6)

which removes the influence of the bad characters with small mod-
uli. Actually even if (6) does not hold, one can prove a Bombieri-
Vinogradov type theorem, by understanding the structure of the prob-
lem given by the bad moduli (see [3]).

There is also a second problem if we are looking for a good estimate
for (4). Let f be a multiplicative function such that f (p) = 1 for all
x
2 < p < x such that p � 1 has no divisors between Q and 2Q and
f (p) = 0 for all the other primes up to x. As we said before, in view of
[1], it is known that p� 1 has typically no divisors in a dyadic interval.
For such an f one has

’
nx

n⌘1 (q)

f (n) � 1
�(q)

’
nx

(n,q)=1

f (n) � x
�(q) log x

for any q 2 (Q, 2Q) and this gives an obstruction to a Bombieri-
Vinogradov theorem since it implies

’
Q<q<2Q

��� ’
nx

n⌘1 (q)

f (n) � 1
�(q)

’
nx

(n,q)=1

f (n)
��� � x

log x
.

This problem comes out when the values of f (p) conspire against the
equidistribution, misbehaving on many large primes p. In order to get
rid of this obstruction, one can just consider multiplicative functions
f which are supported on small primes, say p  x1/2. In this way
one is in the situation where this second problem does not exist and a
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Bombieri-Vinogradov type theorem can be proved. This can be found
in [4], where the authors are also able to go beyond the x1/2-barrier if
f is smooth-supported.

Actually one can avoid the obstruction of large primes even without
any assumption of the function’s support, trying to understand for which
f the Bombieri-Vinogradov theorem (5) holds. Of course a Siegel-
Walfisz assumption like (6) is not enough, what else do we need? A big
part of the argument in the proof of the classical Bombieri-Vinogradov
theorem relates the distribution of 1P to the distribution of µ, bringing
into play the convolution inverse of 1. In view of this, let f be a 1-
bounded multiplicative function (see [5] for further details) and g its
convolution inverse. Evidently if (5) holds for both f and g then (6)
holds for f and g. Can one get the other implication? One sees that
the other implication turns out to be true if (5) also holds for f · 1P. In
other words, the Bombieri-Vinogradov theorem holds for both f and g
if and only if the Bombieri-Vinogradov theorem holds for f · 1P and
Siegel-Walfisz holds for both f and g.

3 Multiplicative functions in short intervals

Recently Matomäki and Radziwi≥≥ made important progress on the
understanding of multiplicative functions in short intervals. In [6],
given a multiplicative function f : N ! [�1, 1], they study f in short
intervals of length y. They compare the mean value between x and
x + y

1
y

’
xnx+y

f (n)

with the average over the whole interval [1, x]:

1
x

’
nx

f (n).
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They proved that the di�erence is almost always small, provided that
y goes to infinity with x. Now the aim is to prove it for every x,
removing the “almost” from the statement. Huxley proved something
in this direction, for y = x7/12+✏ and f the indicator function of primes.
Moreover in [2] Granville, Harper and Soundararajan consider this
problem for multiplicative functions and y = x1�� , with � ! 0+
and all x. Granville and Harper are still working with Matomäki and
Radziwi≥≥ with the hope that a combination of their techniques would
improve this result. They essentially have reached x7/12+✏ in general
and they are looking at further hypotheses that would allow to go down
to as small as x1/2+✏ .

References

[1] K. F���, The distribution of integers with a divisor in a given

interval. In: Ann. of Math., 168 (2008), 367â��433.

[2] A. G��������, A. H����� ��� K. S������������, A new proof

of Halasz’s Theorem, and its consequences. In: Compositio Math-
ematica 155 (2019), 126-163.

[3] A. G�������� ��� X. S���, Bombieri-Vinogradov for

multiplicative functions, and beyond the x1/2
-barrier. In:

arXiv:1703.06865v1 [math.NT].

[4] A. G��������, S. D������� ��� X. S���, Smooth-supported

multiplicative functions in arithmetic progressions beyond the

x1/2
-barrier. In: arXiv:1704.04831v2 [math.NT].

[5] A. G�������� ��� X. S���, When does the Bombieri-

Vinogradov Theorem hold for a given multiplicative function?.
In: arXiv:1706.05710v1 [math.NT].

[6] K. M�������, M. R��������, Multiplicative functions in short

intervals. In: arXiv:1502.02374 [math.NT]

38



A��������� F������
D����������� �� M���������
U��������� �� G�����
V�� D��������� 35
16146, G�����, I�����.
email: fazzari@dima.unige.it

39





PROCEEDINGS OF THE
ROMAN NUMBER THEORY ASSOCIATION
Volume �, Number �, March ����, pages ��-��

David Kohel

Orienting Supersingular Isogeny
Graphs

Written by Boris Fouotsa Tako

1 Introduction

Given an elliptic curve E over a field k, and a finite set of primes S, we
can associate an isogeny graph � = �(E, S):

• whose vertices are isomorphism classes (j-invariants) of elliptic
curves k-isogenous to E , and

• whose edges are isogenies of degree l 2 S.

If S = {l}, then we call � an l-isogeny graph. The l-isogeny graph of
E is (l + 1)-regular.

In characteristic 0, if End(E) = Z, this graph is a tree; if E has
complex multiplication by an order O in an imaginary quadratic field
K (Z ( End(E) = O ⇢ OK ) and l is a split prime in K , then there is a
cycle in �(E, {l}).

Over a finite field of characteristic p, the isogeny graph can be
distinguish as ordinary (which is a faitfull image of a CM isogeny
graph), or supersingular. The idea of orienting a supersingular graph
is to lift the supersingular graph back to a CM isogeny graph.
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The supersingular isogeny graphs are remarkable because the vertex
sets are finite: [ p

12 ]+✏p curves. Moreover, taking a representative curve
E/Fp, with |E(Fp)| = p + 1, all l-isogenies are defined over Fp2 .

Supersingular isogeny graphs have been proposed for

• cryptographic hash functions [2],

• the post-quantum SIDH (Supersingular Isogeny Di�e-Hellman)
key exchange protocol [5].

A new key exchange protocol, CSIDH (Commutative SIDH) [1],
analogous to SIDH, uses onlyFp-rational elliptic curves andFp-rational
isogenies. The constraint to Fp-rational isogenies can be interpreted
as an orientation of the supersingular graph by the subring Z[⇡] of
End(E).

We introduce a category of O-oriented supersingular elliptic curves
and derive the properties of the associated oriented and nonoriented su-
persingular l-isogeny graphs. As application, we introduce an Oriented
Supersingular Isogeny Di�e-Hellman (OSIDH) protocol generalizing
the CSIDH protocol.

2 Orientations and class group action

Let O be an order in an imaginary quadratic field K . An O-orientation
of a supersingular elliptic curve E is an inclusion ı : O ! End(E),
and a K-orientation of a supersingular elliptic curve E is an inclusion
ı : K ! End(E) ⌦Z Q. An O-orientation is said to be primitive if
O � ı(K) \ End(E).

Theorem 2.1 The category of K-oriented supersingular elliptic curves
(E, ı), whose morphisms are isogenies commuting with the K-orientations,
is equivalent to the category of elliptic curves with CM by K.
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One feature of the l-isogeny graph of CM elliptic curves is that in each
component, depending on wether l is split, inert or ramified in K , there
is a cycle of vertices, unique vertex or adjacent pair of vertices which
have l-maximal endomorphism ring.

Chains of l-isogenies leading away from these l-maximal vertices
have successively (and strictly) smaller endomorphim rings, by a power
of l. They are called descending l-isogeny chains.

This let us define the depth of a CM elliptic curve in the l-isogeny
graph as the valuation of the index [OK : End(E)] at l, which measures
the smallest distance to an l-maximal vertex. Consequently, we obtain
a notion of depth at l in the K-oriented supersingular l-isogeny graph.

The set SSO(Fp2,O) of primitive O-oriented supersingular elliptic
curves is equiped with an action of the class group Cl(O):

Cl(O) ⇥ SSO(Fp2,O) ! SSO(Fp2,O)

(E, [a]) 7! [a] · E = E/E[a]

Definition 2.2 We define a vortex to be the l-isogeny graph whose
vertices are isomorphism classes of O-oriented supersingular elliptic
curves with l-maximal endomorphism ring, equiped with an action of
Cl(O).

Figure 1: Example of a vortex under the action of Cl(O

The action of Cl(O) extends to the union [iSSO(Fp2,Oi) over all
superorders Oi containing O via the surjections Oi.
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Definition 2.3 We define a whirpool to be an l-isogeny graph of O-
oriented supersingular elliptic curves acted on by Cl(O).

Figure 2: Example of a whirpool under the action of Cl(O

3 l-ladders

Let’s consider a descending l-isogeny chain (Ei, �i) of O-oriented su-
persingular elliptic curves with

OK ⇢ End(E0), · · · ,O = Z + lnOK ⇢ End(En).

Fix q a prime in OK over a small prime number q (q , l, p) that splits
in OK . Then the isogeny

 0 : E0 ! F0 = E0/E0[q]

can be extended to the l-isogeny chain by pushing forward the cyclic
group C0 = E0[q]:

C1 = �0(C0), · · · ,Cn = �n�1(Cn�1),

and defining Fi = Ei/Ci. This construction motivates the following
definitions.

44



Definition 3.1 An l-ladder of length n and degree q is a commutative
diagram of l-isogeny chains (Ei, �i) and (Fi, �0i) of lenght n connected
by q-isogenies  i : Ei ! Fi.

Figure 3: Example of an l-ladder

Considering modular polynomials �m(X,Y ) 2 Z[X,Y ], there
exist a cyclic m-isogeny between two curves E and E 0 if and only if
�m( j(E), j(E 0

)) = 0.

Definition 3.2 A modular l-isogeny chain of length n over k is a finite
sequence ( j0, j1, · · · , jn) in k such that �l( ji, ji+1) = 0 for 0  i < n.
A modular l-ladder of length n and degree q is a pair of modular
l-isogeny chains

( j0, j1, · · · , jn) and ( j 00, j
0

1, · · · , j
0

n) such that �q( ji, j 0i ) = 0

Clearly, an l-isogeny chain (Ei, �i) determines the modular l-isogeny
chain ( ji = j(Ei)), and the converse is also true.
Given any modular l-isogeny chain ( ji), a supersingular elliptic curve
E0 with j(E0) = j0, and an q-isogeny  0 : E0 ! F0, it follows that
we can construct an l-ladder  : (Ei, �i) ! (Fi, �0i) and hence
a modular l-ladder. In fact the l-ladder can be e�ciently constructed
recursively from the l-isogeny chains ( j0, · · · , jn) and ( j 00, · · · , j

0

i ), by
solving the system of equations⇢

�l( j 0i ,Y ) = 0
�q( ji+1,Y ) = 0

45



4 OSIDH

We now describe a general construction for a key exchange protocol
using oriented supersingular elliptic curves. The first protocol is a naive
construction that serves as a bridge to the second one which is better
secured.
For the general setting, let OK , of class number 1, be the maximal
order of an imaginary quadratic field K; and p a large prime such that⇣
�K
p

⌘
, 1.

Alice and Bob agree on an OK�oriented supersingular elliptic curve
E0/Fp2 , a small prime l and a descending isogeny chain

E0 �! E1 �! E2 �! · · · �! En

Alice chooses a horizontal endomorphism  A =  0 : E0 ! F0 = E0
and pushes it foward to an l�ladder of lenght n.

The l�isogeny chain (Fi) is sent to Bob. Bob chosses an endomor-
phism  B and sends the resulting l�isogeny chain (Gi) to Alice. Each
applies the private endomorphism to obtain (Hi) =  A ·(Gi) =  B ·(Fi),
and H = Hn is the shared secret. This protocol is resumed in the fol-
lowing picture. The blue arrows correspond to the orientation chosen
throughout by Alice while the red ones represent the choice made by
Bob.
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This naive protocol presents some week points. Firstly, we know
End(E0) and pushing forward the l�ladder (from a descending isogeny
chain) implies Z + lnEnd(E0) ⇢ End(En) = End(Hn) = End(H).
Using the following theorem, one may be able to construct  A.

Theorem 4.1 ([4]) Let E and EA be supersingular elliptic curves over
Fp2 such that E[ln] ⇢ E(Fp2) and there is an isogeny  A : E ! EA

of degree ln. Suppose there is no isogeny � : E ! EA of degree
strictly less thant ln. Then, given an explicit description of End(E) and
End(EA), there is an e�cient algorithm to compute  A.

Secondly, sharing (Fi) and (Gi) reveals too much of private data.
From the exact short sequence of class groups:

1 !
(OK/lnOK )

⇥

O
⇥

K (Z/lnZ)⇥
! Cl(O) ! Cl(OK ) ! 1,

an adversary can compute successive approximations (mod li) to  A

and  B modulo ln hence in Cl(O). You can find more details in [3].

We refine the protocol as follows.
A set of prime ideals p1, p2, · · · , pt ⇢ O = On = End(En) \ K ,! OK

(respectively over primes p1, p2, · · · , pt that split in O) and a positive
integer r such that (2r + 1)t ⇡ d

p
12e are added to the previous public

parameters.
Alice chooses a tuple of integers (e1, · · · , et ) 2 [�r, r]t and constructs
an isogenous curve Fn =

En

En[p
e1
1 · · ·p

et
t

. She also computes for each i,
the horizontal isogeny chains determined by the isogenies with kernel
Fn[p

j
i ] for j 2 [�r, r] and p�ji := pi�j . She sends Fn and the isogeny

chains to Bob. Bob does the same with a tuple (d1, · · · , dt ) and sends
the curve Gn and the coresponding isogeny chains to Alice. Alice Takes
ei steps in the pi-isogeny chain and pushes foward the information for
all j > i and Bob does the same.
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Both of them share the same elliptic cure

Hn =
Fn

Fn[p
d1
1 · · ·pdtt ]

=
Gn

Gn[p
e1
1 · · ·pett ]

=
En

En[p
e1+d1
1 · · ·pet+dtt ]

This scheme is resumed in the following picture.

Figure 4: Graphic representation of OSIDH
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Introduction

Pär Kurlberg gave a talk the 19th April 2019 about the two articles,
written by P. Kurlberg and L. Rosenzweig : "Prime and Möbius cor-
relations for very short intervals in Fq[x]" [1]; and " The Chebotarev
density theorem for function fields, incomplete intervals", [2].
We give the abstract of this talk, written by P. Kurlberg:
"We investigate function field analogs of the distribution of primes, and
prime k-tuples, in "very short intervals "of the form I( f ) := { f (x)+ a :
a 2 Fp} for f (x) 2 Fp[x] and p prime, as well as cancellation in sums
of function field analogs of the Möbius function and its correlations
(similar to sums appearing in Chowla’s conjecture). For generic f , i.e.,
for f a "t Morse polynomial" , we show that error terms are roughly of
size O(pp) (with typical main terms of order p). We also give examples
of f for which there is no cancellation at all, and intervals where the
heuristic "primes are independent" fails very badly. Time permitting
we will discuss the curios fact that (square root) cancellation in Möbius
sums is "equivalent" to (square root) cancellation in Chowla type sums.
"
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1 Some prerequisites and study of intervals in
Fp[x].

We will first show some analogies between Z and the ring Fp[x]:
Z // Fp[x]oo

prime numbers // irreducible polynomials in Fp[x]oo

size of n = |n| = |Z/nZ| // size of f = | f | = |Fp[x]/( f )| = p
deg( f )oo

So, we can define the Möbius function µ in Fp[x] analogously to the
usual Möbius function in Z: let f an element in Fp[x]; if f is not
squarefree, then we set µ( f ) = 0, else we can write f = g1 . . . gn, as a
product of n distinct prime factors, and we set µ(g) = (�1)n.

Now, let d be an integer, we define Md(Fp[x]) = {g 2 Fp[x]; deg(g) =
d and g is monic }, we can see this set as an interval in Fp[x]. We have
the following results about the repartitions of irreducible polynomials
into these intervals:

Theorem 1 (Gauss 1828) We have:

|{ f 2 Md(Fp[x]); f is irreducible }| = 1
d

’
e |d
µ(d/e)pe = p

d
+O(pd/2).

We say here that the prime density of Md(Fp[x]) is 1/d.

We want now to generalise this result to shorter intervals. So we
begin to define shorter ones :

I( f ; m) = { f +

m’
i=0

aix
i; a0, . . . , am 2 Fp}.

52



We are in particular interested in very short intervals of the shape:

I( f ) = I( f ; 0) = { f + a; a 2 Fp} = {g 2 Fp[x]; |g � f |  1}.

However, to obtain similar result as the theorem 1, f has to satisfy some
conditions:

Definition 1 The polynomial f 2 Md(Fp[x]) is Morse if and only if f

has d � 1 critical values, i.e.:

|{ f (⇣); f
0(⇣) = 0}| = d � 1.

Example 1 The polynomials x, x2, x(x2 � 1) are Morse. However, the
polynomials x

3, x4(x2 � 1) are not Morse.

Remark 1 1. If f 2 Md(Fp[x]), then we have:

|{s 2 Fp; f + s.x is Morse }| = p +Od(1).

2. And thanks to Hilbert’s theorem, if g 2 Q[x] is of degree d and
Morse, then g has a nice Galois Group, i.e.:

Gal( f (x) + t/Q(t)) = Sd .

We finally obtain this result, from the article [1], as a generalisation of
theorem 1:

Theorem 2 If f 2 Md(Fp[x]) is Morse, then we have:

|{g 2 I( f ); g is prime }| = 1
d

p +Od(
p

p). (1)

We say that the prime density of I( f ) is 1/d.
Moreover, for distinct h1; . . . ; hk 2 Fp, we have:

|{g 2 I( f ); g+h1, . . . , g+hk are all primes }| = (1
d
)k .p+Od;k(

p
p). (2)
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In general, this theorem is not true, when we take f not Morse, we
will give some examples:
Example 2 1. Assume p ⌘ 2 mod 3 and take f = x

3, then:

|{a 2 Fp; x
3 + a is irreducible }| = 0.

So the prime density of I( f ) is 0.
Assume now that p ⌘ 2 mod 3, then

|{a 2 Fp; x
3 + a is prime }| = 2

3
p +O(pp).

The prime density is twice the expected density.

2. Now take f = x
4 � 2x

2 (d = 4), then we have

|{a 2 Fp; a + f (x) is prime }| = 1
4

p +O(pp).

We also have the same result, when we replace f by f + 1.
However:

|{a 2 Fp; f (x) + a, f (x) + a + 1 are both primes }| = O(pp),
when p ⌘ 3 mod 4, and

|{a 2 Fp; f (x)+a, f (x)+a+1 are both primes }| = 1
8

p+O(pp),

when p ⌘ 1 mod 4.

Remark 2 (Related work) We assume that the polynomial f satisfies
the hypotheses of the theorem 2.

• Bank, Bary-Soroker and Rosenzweig have shown in the article
[3], that: the equality (1) is true if (p; 2d(d � 1)) = 1, for
I( f , 1). This equality is also true for I( f , 2) assuming some other
conditions.

• Pollack has also shown, in 2008, that the equality (2) is true for
I = Md(Fp[x], for (2d; p) = 1.
After, in 2014, Bary-Soroker showed that this equality is also
true if (2d; q) > 1.
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2 Cancellation in Möbius and Chowla type sums
for function fields

In this part, we will see some results about the Möbius µ function for
function fields.

Theorem 3 Assume f 2 Md(Fp) is Morse, then we have:

1. ’
g2I ( f )

µ(g) = Od(
p

p),

2. Moreover, take k elements h1; . . . ; hk 2 Fp, then we have:’
g2I ( f )

µ(g + h1) . . . µ(g + hk) = Od;k(
p

p)

In fact, for any f 2 Md(Fp) (without the Morse assumption), we have
1 () 2.

Example 3 If p ⌘ 2 mod 3, and we assume that f = x
3, then we

have: ’
g2I (x3)

µ(g) = p +O(1).

Remark 3 (Related work) We assume that the polynomial f satisfies
the hypotheses of the theorem 3.

• Carmon-Rudnik have shown that the equality 2 and 1 are true
for I = Md(Fp[x]), in the article [4].

• Keating-Rudnik have shown, in the article [5], that the equality
1 is also true for I = I( f ; m) if m � 2.

Finally, we remind a theorem, from the article [6]:
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Theorem 4 (Shparlinski) Assume I0, I1 two intervals in N, such that
for some " > 0, we have :

|I0 |, |I1 | > p
1/4+" and |I0 | |I1 | > p

1+" .

Then, we obtain:

|{(a0; a1) 2 I0 ⇥ I1; x
d + a1x + a0 is irreducible }| ⇠ |I0 | |I1 |

d
.

Rosenzweig and Kurlberg obtain a stronger form of this theorem: they
assume weaker properties on I0, I1, and obtain the same result.

Theorem 5 Assume I0, I1 two intervals in N, such that we have :

|I0 |�1 = o(1) and p
1/2/|I1 | = o(1).

Then, we obtain:

|{(a0; a1) 2 I0 ⇥ I1; x
d + a1x + a0 is irreducible }| ⇠ |I0 | |I1 |

d
.

3 Galois theory

We assume f 2 Md(Fp), so the polynomial gt (x) = f (x)+ t 2 Fp(t)[x]
is irreducible, so consequently, we put K/Fp(t) the splitting field of f ,
and L/K its Galois closure:

Fp(t) ⇢ K ⇢ L.

We also put G = Gal(L/Fp(t)).
The aim of this part is to compute the prime density of I( f ), i.e.:

|{a 2 Fp; f (x) + a = gt (x) � (t � a) is prime }|.

Remark 4 Let pa = (t � a) an ideal of Fp(t), then we define

�a = (
L/Fp(t)

pa
) ⇢ G
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as the Artin Symbol of pa in L (this is a conjugacy class in G).
Then every element of �a is a d-cycle, if and only if f (x) + a =

gt (x) � (t � a) is prime in Fp(t)[x].
For more details, we can see the part 6, chapter 7 of [8].

So we can conclude with this theorem:

Theorem 6 (Reichardt, Cohen-Odoni, Jarden, Fried) Let C ⇢ G be
a conjugacy class, and assume moreover, L \ Fp = Fp.
Then, we have: |{a; 2 Fp;�a 2 C}| = |C |

|G | p +O[L:Fp (t)](
p

p).

So now suppose that f is Morse. Thanks to Hilbert’s Theorem:
G = Sd. So put C = {�;� is a d-cycle } ⇢ G, this is a conjugacy class
of cardinality (d � 1)!.
So we get |C |

|G | =
1
d , and finally:

|{a 2 Fp; f (x) + a is a prime }| = p

d
+O(pp).

So the prime density of I( f ) is 1
d .

Now, let h1 , h2 both in Fp.
We want to compute |{a 2 Fp; f (x)+a+h1 and f (x)+a+h2 both primes }|.
So we put Khi/Fp(t) the splitting field of gt (x) + hi in Fp(t), and
we put Lhi/Khi the Galois closure of Khi . We finally put Ghi =

Gal(Lhi/Fp(t)).
Now, remark that if f is Morse, then by definition, f + hi is also Morse.
So we get Gh1 = Gh2 = Sd.
So now, put L

2 = Lh1 Lh2 , if p is big enough, then we get

G
2 = Gal(L2/Fp(t)) ' Sd ⇥ Sd .

Finally, we can prove, that we have a prime density of 1
d .

1
d , ie:

|{a; 2 Fp; f (x)+a+h1 and f (x)+a+h2 both prime }| = 1
d2 p+O(pp).
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On Siegel’s Lemma
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1 Diophantine approximation and linear systems

In 1844 Liouville proved that, if ↵ 2 R is algebraic of degree d � 2,

then there exists a constant c > 0, depending on ↵, such that for each

choice of p 2 Z and q 2 Z>0����↵ � p

q

���� > c
1

qd
.

This result has been successively sharpened during the 20
th

century,

for example by Thue and Siegel who proved the following theorems.

Theorem 1 (Thue, 1909) Let ↵ 2 R be an algebraic number of degree

d � 3. Then for each

 >
d

2
+ 1

there exists a constant c > 0, depending on ↵ and  such that, for each

choice of p 2 Z and q 2 Z>0, we have

����↵ � p

q

���� > c
1

q
.
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Theorem 2 (Siegel, 1921) Let↵ 2 R be an algebraic number of degree

d � 3. Then for each

 > min
�=1,...,d

✓
� +

d

� + 1

◆

there exists a constant c > 0, depending on ↵ and , such that for each

choice of p 2 Z and q 2 Z>0����↵ � p

q

���� > c
1

q
.

In particular this is true for each  > 2

p
d.

A common strategy in the original proofs of both theorems is to use

a “good” approximation of ↵ to construct a non-trivial polynomial in

several variables with small integer coe�cients and many zeroes and

then deriving a contradiction. The construction of such a polynomial

is a matter of linear algebra over the integers: in [4] Siegel isolated

the idea behind this part of the proof in a lemma popularly known as

“Siegels’s Lemma”

2 Siegel’s Lemma: ideas of proof and

generalizations

Lemma 1 (Siegel, 1929) Let M < N be positive integers, let U � 1 be

a real number and let u = (umn) 2 ZM⇥N
be a matrix with entries of

absolute value at most U. Then the linear system

8>>><
>>>:

u11x1 + . . . + u1N xN = 0

...
uM1x1 + . . . + uMN xN = 0

admits a non-zero solution (xi) 2 ZN satisfying

max
i=1,...,N

|xi |  (NU)
M

N�M .
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Notice that the theorem would be false if we took U < 1/N , thus

the hypothesis U � 1 cannot be simply removed: it is funny to say

that Siegel himself had to remark it during the lectures of other (now

famous) mathematicians.

Instead of giving a complete proof of the above Lemma, let us only

consider the cases N = 3. If N = 3 and M = 1 we can prove the

theorem using the pigeonhole principle. Let us see the matrix (umn)

as a linear map u : R3
! R. Let � = b

p
3Uc and let us consider the

image of I = {0, . . . , �}3
under u: if ⇠ = (�/2, �/2, �/2) then, for each

x = (x1, x2, x3) 2 I, we would have

|u(x)�u(⇠)| = |u11(x1 ��/2)+u12(x2 ��/2)+u13(x3 ��/2)| 
3

2
�U .

Thus, as x varies in I the vector u(x) is an integer varying in an interval

of length 3�U, i.e., u(x) varies in a set J of size at most 3�U + 1. Since

#J  3(�+1)U < (�+1)
3 = #I we conclude that there exist x

0 , x
00
2 I

such that u(x
0
) = u(x

00
). Thus the vector x = (x1, x2, x3) := x

0
� x

00
is

non-zero and satisfies

max
i=1,2,3

|xi |  � 
p

3U , u(x) = 0 .

If N = 3, M = 2 and the matrix (umn) has rank 1 we can deduce the

thesis from the case N = 3,M = 1, while if the matrix (umn) has rank

2 then we can just take

x1 = u12u23�u13u22 , x2 = u13u21�u11u23 , x3 = u11u22�u12u21

(1)

and this solution satisfies maxi=1,2,3 |xi |  2U
2
 (3U)

2
.

A full proof of the Lemma can be done using the pigeonhole principle

in a similar manner to the case N = 3,M = 1 or using techniques from

Geometry of Numbers.

Several improvements and generalizations of Siegel’s Lemma have

been formulated. For example in [5] a generalization valid for function

fields is proven and [1] contains a version for number fields.
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In particular, given two positive integers M < N , a number field

K and a matrix u 2 K
M⇥N

of rank M , Bombieri and Vaaler define

a height H(u) (playing the role of the real number U) and prove the

existence of a non-zero solution x 2 K
N

with multiplicative height

H(x) 

✓
2
s

⇡s

p
|�K |

◆ 1

[K :Q]

H(u)
1

N�M

where s is the number of complex embeddings of K and �K is the

discriminant of K .

3 Sharpness of the Lemma

A natural (vague) question to ask is how sharp Siegel’s Lemma is.

A first answer has been given by W.M. Schmidt who proved that the

exponent in the Lemma is best possible. Indeed, in the first pages of [3],

for each pair of positive integers M < N and for each ✏ > 0, Schmidt

constructs an infinite family of linear systems (umn) 2 ZM⇥N
with the

property that each non-zero solution (xi) 2 ZN satisfies

max
i=1,...,N

|xi | > (1 � ✏) max
m=1,...,M
n=1,...N

|um,n |
M

N�M .

This shows that for each choice of a constant cN,M and for each choice of

a function fN,M : R>0 ! R>0 such that, for large U, one has fN,M (U) =

o(U
M

N�M ), Siegel’s Lemma becomes false if we impose

max
i=1,...,N

|xi |  cN,M fN,M (U) instead of max
i=1,...,N

|xi |  (NU)
M

N�M .

In particular, for each ✏ > 0, Siegel’s Lemma becomes false if we

impose max |xi |  cN,MU
M

N�M �✏
.

Another result about the sharpness of Siegel’s Lemma has been given

by Beck in [2] and it is more concerned with the constant cN,M . In
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particular in [6] one can find a version of Lemma 1 stating that, with

the same hypotheses, there exists a solution x = (xi) 2 ZN satisfying

max
i=1,...,N

|xi | 

⇣p
N + 1 U

⌘ M
N�M
.

In 2017 Beck proved that there exists a (small) constant c0 > 0 such

that, for each positive integers N �
3

2
M , there exists a linear system

(umn) with coe�cients umn 2 {±1} such that every solution satisfies

max
i=1,...,N

|xi | > c0(
p

N)
M

N�M . (2)

In [2] it is actually proven that, choosing c0 = 10
�30

, all but a small

proportion (i.e. O(2
�M/2

)) of all systems with coe�cients in {±1} has

big solutions in the sense of equation (2). The proof is not constructive

and uses Fourier analysis and Erdös’s probabilistic method.

The last result about the sharpness of Siegel’s lemma is a recent work

by David Masser and Roger Baker proving that the Lemma is sharp “in

most cases” in the following sense.

Theorem 3 [David Masser, Roger Baker] Let M < N be positive

integers. There exist constants C, ✓ > 0 depending on N with the

following property: for any pair of real numbers U, B � 1 there are at

most

CU
MN

B✓

systems (umn) 2 ZM⇥N
such that |umn |  U and such that some non

trivial solution (xi) 2 ZN satisfies

max
i=1,...,N

|xi | <
U

M
N�M

B
.

For example this theorem implies that for each function f : R>0 ! R>0

such that, for large U, one has f (U) = o(U
M

N�M ) then, among all the

systems (umn)
M⇥N

with absolute value of the coe�cients at most U,
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the proportion of systems admitting a non zero solution (xi) 2 ZN

satisfying max |xi |  f (U) is a proportion tending to zero as U tends

to infinity.

The proof of Theorem 3 becomes more di�cult when M and N get

near. For example in the cases where N � 2M Theorem 3 can be

proved using Widmer’s techniques for counting intersections of lattices

and constructible regions of Euclidean spaces. If one wants to treat

more cases i.e. when N � M + 2 then these techniques are not enough

anymore but W.M. Schmidt’s heights of subspaces comes to help. The

cases N = M+1 is the most di�cult, which is paradoxical as then there

are usually explicit solutions like (1).
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Coordinates of Pell equations
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Let d be a positive integer which is not a square. The Pell equation
corresponding to d is the equation

X
2 � dY

2 = ±1 (1)

to be solved in positive integers (X,Y ).
It is known that (1) always has positive integer solutions. Letting

(X1,Y1) be the smaller positive integer solution of it, all other solutions
are of the form (Xn,Yn) with

Xn +
p

dYn = (X1 +
p

dY1)n for all n � 1.

First attempt of the problem by letting U be your favorite set of
positive integers. What can one say about d such that the equation

Xn 2 U for some n? (2)

Unfortunately, if one formulates it in this way, the above problem is
trivial. Indeed, u 2 U and write

u
2 + 1 = dv2,
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for some squarefree integer d. Then

u
2 � dv2 = �1,

so u = Xn for some n � 1 corresponding to d. If u > 1, we can play
the same game with

u
2 � 1 = dv2.

Now, we try a second attempt of our problem. Since our first attempt
seemed to have a trivial answer, we try the following potentially more
interesting problem: What can we say about d such that

Xn 2 U

holds for at least two di�erent values of n? That is, we now look for
values of the squarefree integer d such that the equation

U
2 � dV

2 = ±1,

has two di�erent positive integer solutions (U,V) , (U 0,V 0) with
{U,U 0} ⇢ U. Let us look at a few examples:
Take

U =
⇢
a

✓
10m � 1

9

◆
; 1  a  9, m � 1

�
.

The elements of U are base 10 repdigits since

a

✓
10m � 1

9

◆
= aa · · · a|  {z  }

m times

.

Theorem 1 (A. Dossavi-Yovo, F. Luca and A. Togbé, 2016.) Let (Xn,Yn)
be the nth solution of the Diophantine equation

X
2 � dY

2 = 1.

The equation Xn 2 U has at most one solution n except:
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(i) d = 2 for which n 2 {1, 3},

(ii) d = 3 for which n 2 {1, 2}.

Now let U be the sequence of all Fibonacci numbers given by F1 =

F2 = 1 and Fn+2 = Fn+1 + Fn for all n � 1.

Theorem 2 (F. Luca and A. Togbé, 2018.) Let (Xn,Yn) be the nth so-

lution of the Diophantine equation

X
2 � dY

2 = ±1

The equation Xn 2 U has at most one solution n except for d = 2 in

which case n 2 {1, 2}.

The above result can be reformulated by saying that the only nontrivial
solutions of the Diophantine equation

(F2
n ± 1)(F2

m ± 1) = ⇤

are (n,m) = (1, 4), (2, 4).
Let g � 2 be an integer and

Ug =

⇢
a

✓
gm � 1
g � 1

◆
; 1  a  g � 1, m � 1

�
.

The members of Ug are called base g-repdigits.

Theorem 3 (B. Faye and F. Luca, 2016.) Let (Xn,Yn) be the nth solu-

tion of the Diophantine equation

X
2 � dY

2 = 1.

If Xn 2 U has two solutions n, then

d < exp
⇣
(10g)105

⌘
.

Next, we take U = {Fn : n � 4}.
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Theorem 4 (B. Kafle, F. Luca and A. Togbé, 2018.) Let (Xn,Yn) be

the nth solution of the Diophantine equation

X
2 � dY

2 = ±4. (3)

The equation Xn 2 U has at most one solution n.

Allowing also the "small Fibonacci numbers", we get that the equation
Xn 2 U, where (Xn,Yn) satisfies (8) has only one solution n except
when d 2 {2, 5} for which all n have n  4.

Let U be the sequence of Tribonacci numbers which is given by
T1 = T2 = 1, T3 = 2 and Tn+3 = Tn+2 + Tn+1 + Tn for all n � 1.

Theorem 5 (F. Luca, A. Montejano, L. Szalay and A. Togbé, 2017.)
Let (Xn,Yn) be the nth solution of the Diophantine equation

X
2 � dY

2 = ±1. (4)

The equation Xn = Tm has at most one solution (n,m) except:

(i) (n,m) = (1, 3) and (2, 5) in the + case (d = 3);

(ii) (n,m) = (1, 1), (1, 2), (3, 5) in the � case (d = 2).

We next give the main idea of the proof of Theorem 2. Let

(↵, �) =
 
1 +

p
5

2
,
1 �

p
5

2

!
, � = X1 +

p
dY1.

Then the equation Fn = Xm is equivalent to

↵n � �np
5
=
�m + ��m

2
, in integers n � 1,m � 1.

This implies

n log↵ + log(2/
p

5) � m log � = O

✓
min

⇢
1
↵n
,

1
�m

�◆
.
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Linear forms in logs give m ⌧ log n and n ⌧ log � log n. Unfortunately
we don’t know �. But say we have another such relation Fn0 = Xm0.
Then also

n
0 log↵ + log(2/

p
5) � m

0 log � = O

✓
min

⇢
1
↵n0
,

1
�m0

�◆
.

Then we do some linear algebra and assuming n < n
0, we get

(n0
m � m

0
n) log↵ � (m � m

0) log(2/
p

5) = O

✓
n
0

↵n

◆
.

This gives n ⌧ log n
0. Since n � log �, we get that log � ⌧ log n

0.
Thus, n

0 ⌧ (log �) log n
0 ⌧ (log n

0)2, so everything is bounded. This
idea ended up being very fruitful.

Let 2F = F + F be the set of numbers which can be written as a
sum of two Fibonacci numbers.

Theorem 6 (C. A. Gómez and F. Luca, L., 2018.) Let (Xn,Yn) be the

nth solution of the Diophantine equation

X
2 � dY

2 = ±1. (5)

The equation Xn 2 2F has at most one solution n except for d 2
{2, 3, 5, 11, 30}.

Is it true that for every k � 3 there are only finitely many d such that
Xn 2 kF has more than one solution n? Here

kF = F + F + · · · + F .

We have no idea, If we replace kF by the set of positive integers having
at most k ones in their binary expansion, then there are infinite many
d such that Xn has at most two ones in it’s binary expansion for both
n = 1, 2. Suppose that F 2 = F · F is the sequence of numbers which
are products of two Fibonacci numbers.

71



Theorem 7 (F. Luca, A. Montejano, L. Szalay and A. Togbé, 2017.)
Let (Xn,Yn) be the nth solution of the Diophantine equation

X
2 � dY

2 = ±1. (6)

The equation Xn 2 F 2
has at most one solution n except for d 2

{2, 3, 5}.

Now, we move on to generalized k-Fibonacci numbers. For an integer
k � 2 consider the following generalization of the Fibonacci sequence
F (k) = {F

(k)
n }n��(k�2) given by

Fn = Fn�1 + · · · + Fn�k n � 2,

where F2�k = F3�k = · · · = F0 = 0, F1 = 1. When k = 2, 3 one
obtains the Fibonacci and Tribonacci sequences, respectively.

Theorem 8 (M. Ddamulira and F. Luca, 2019.) Let k � 4 be a fixed

integer. Let d � 2 be a square-free integer. Assume that

Xn1 = F
(k)
m1 , and Xn2 = F

(k)
m2 (7)

for positive integers m2 > m1 � 2 and n2 > n1 � 1, where Xn is the

x–coordinate of the nth solution of the Pell equation

X
2 � dY

2 = ±1.

Put ✏ = X
2
1 � dY

2
1 . Then, either:

(i) n1 = 1, n2 = 2, m1 = (k + 3)/2, m2 = k + 2 and ✏ = 1; or

(ii) n1 = 1, n2 = 3, k = 3⇥2a+1+3a�5, m1 = 3⇥2a + a�1, m2 =

9 ⇥ 2a + 3a � 5 for some positive integer a and ✏ = 1.

For more explanations of the exceptions we have:
For k � 2 one has

F
(k)
n = 2n�2 for n 2 [2, k + 1];

F
(k)
n = 2n�2 � (n � k)2n�k�3 for n 2 [k + 2, 2k + 1].
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For suitable n and k it might happen that

F
(k)
n = 2n�2 � (n � k)2n�k�3 = 2x

2 � 1, 4x
3 � 3x

for some positive integer x which is necessarily a power of 2. Such
equations give solutions to F

(k)
n1 = X1 and F

(k)
n2 = X2 or X3, respectively.

Next, let F act = {m! : m � 1}.

Theorem 9 (S. Laishram, F. Luca and M. Sias, 2019.) Let (Xn,Yn)be

the nth solution of the Diophantine equation

X
2 � dY

2 = ±1. (8)

The equation Xn 2 F act implies n = 1.

To prove Theorem 9, we take a round about way and look at members
of Lucas sequences which are products of factorials. Let r, s be coprime
integers, r

2 + 4s , 0. Let ↵, � with |↵ | � |�| be the roots of

x
2 � r x � s = 0.

Assume (r, s) , (1,�1), (�1,�1). The Lucas sequence of the first kind
and second kind {Un}n�0, and {Vn}n�0 of parameters (r, s), respec-
tively, have its general terms given by

Un =
↵n � �n
↵ � � , Vn = ↵

n + �n for all n � 0.

Alternatively, one can define them by setting U0 = 0, U1 = 1, V0 =

2, V1 = r and imposing that the recurrence

Wn+2 = rWn+1 + sWn holds for all n � 0

is satisfied for both {Wn}n�0 2 {{Un}n�0, {Vn}n�0}. When r = s =

1,Un = Fn the sequence of Fibonacci numbers.
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Theorem 10 (F. Luca and P. Stanica, 2006.) The largest solution of

the equation

Fn1 Fn2 · · · Fnt = m1! · · ·mk!

in integers 1  n1 < · · · < nt and 1  m1  m2  · · ·  mk is

F1F2F3F4F5F6F8F10F12 = 11!

Letting

PF = {
k÷
i=1

mi! : k � 0, mi � 1}

be the set of positive integers which are products of factorials, one can
prove easily that if {Un}n�0 is a Lucas sequence, then

|Un | 2 PF (9)

has only finitely many solutions n. In fact, let us prove it. Write

|Un | = m1! · · ·mk!, 1  m1  m2  · · ·  mk .

The left–hand side is  2|↵ |n. For n � 31, the left–hand side has, by the
Primitive Divisor Theorem, proved by Bilu, Hanrot, Voutier in 2001, a
prime factor p � n � 1, which must divide mk!. Thus, mk � n � 1, so
mk! � 2((n � 1)/e)n�1. Hence, we got

2|↵ |n � 2((n � 1)/e)n�1,

so n = O(|↵ |).
We would like to have an absolute bounded on n which does not

depend on ↵. This is contest of the next theorem.

Theorem 11 (S. Laishram, F. Luca and M. Sias, 2019.) In equation

(9), we have:

(i) n  3 ⇥ 105
.
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(ii) If additionally, the roots ↵, � are real, then n  210.

(iii) Further, if s = ±1, then n  150.

The same bounds hold if we replace Un by Vn in (9).

The general idea is to study on one hand the size of the two sides
of (9) and on the other hand the arithmetic information obtained from
considering the multiplicative contribution to the sides of (9) of the
primitive prime factors of Un. The size argument part is easy. On the
one–hand,

log |Un |  log 2 + n log |↵ |.
On the other hand

log

 
k÷
i=1

mi!

!
� log 2 +

k’
i=1

(mi � 1)(log mi � 1).

So,

n log |↵ | �
k’
i=1

(mi � 1)(log mi � 1). (10)

Now for the primitive prime factors. These are the primes p | Un and
p - Um for any 1  m < n. Also, as a technical condition, we assume
that p - |�|. It is known that in the left,

’
p↵ kUn

p primitive

log p
↵ � log

✓ |�n(↵, �)|
n

◆
.

Here
�n(x, y) =

÷
1kn
(k,n)=1

✓
x � exp(2⇡ik

n
y)

◆

is the homogenization of the n
th cyclotomic polynomial. The left–hand

side can be lower bounded as

log
✓ |�n(↵, �)|

n

◆
� (�(n) � 1) log |↵ | � C12!(n)(log n)2 log |↵ | (11)
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with some explicit constant C1. In the right–hand side, these primes
are at most the primes p ⌘ ±1 (mod n), which divide m1!m2! · · ·mk!.
Using the known formula for the contribution of a prime in a factorial,
we get that in the right this is at most


’

mi �n�1
(mi � 1)

’
p⌘±1 (mod n)

pmi

log p

p � 1
.

Using the Montgomery–Vaughan bound

⇡(x; b, a)  2x

�(b) log(x/b) valid for all x � b,

for the number of primes p ⌘ a (mod b) with p  x and Abel sum-
mation formula, we get the following upper bound on the right–hand
side ✓

4(1 + log log n

�(n)

◆ ’
mi �n�1

(mi � 1) (log mi � 1) ,

which combined with (10) gives an upper bound of✓
4(1 + log log n

�(n)

◆
n log |↵ |

on the contribution of the primitive primes from the right–hand side.
Comparing the last bound with (11), we get

(�(n)�1) log |↵ |�C12!(n) log |↵ |(log n)2 <
✓
4(1 + log log n)

�(n)

◆
n log |↵ |.

A paper of Voutier shows that one can take C1 = 73. This gives
n < 18 ⇥ 106. Then one goes down easily to about 2 ⇥ 106. For
n  3 ⇥ 105 more ingredients are needed.

What does this have to do with X-coordinates of Pell equations and
factorials?
Well say, Xk = n!. Then

Xk =
1
2
(↵k + �k), ↵ = X1 + d

p
Y1 = X1 +

q
X

2
1 � ", " 2 {±1},
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and � is the conjugate of ↵. So, we get

↵k + �k = Vk = 2!n!,

therefore by the previous results, k < 150. One may assume that k is
prime. If k = 2, then X2 = 2X

2
1 ±1 is odd and > 1, so it is not a product

a product of factorials. Say k = p and p 2 [3, 150] is a prime. Then
Xp = Pp(X1) is a polynomial of degree p in X1. Take p = 3, " = 1.
Then we need to solve

X3 = X1(4X
2
1 � 3) = n!

In the left, the only factors that divide 4X
2
1 � 3 are (aside possibly

from 3 to exponent exactly 1), only primes q such that (3/q) = 1.
These occupy two of the four possible progressions modulo 12 which
may contain infinitely many primes, so half of all the primes, and they
contribute the factor 4X

2
1 � 3 of X3 so multiplicatively about

X
2/3
3 .

In the right, these primes, by the equidistribution of the primes in
progressions modulo 12, will contribute about

n!1/2 = X
1/2
3 .

We get a contradiction for large X3. To quantify what large means we
need explicit estimates for primes in progressions with ratio 12. More
generally, we need for all other all primes p 2 [5, 150] explicit estimates
for the number of primes q  x which are in a certain progression
modulo p. We used the following result.

Theorem 12 (Bennett, Martin, Bryant and Rechnitzer, 2018.) Let m 
1200, gcd(a,m) = 1. For all x � 50m

2
we have

x

�(m) log x
< ⇡(x; m, a) < x

�(m) log x

✓
1 +

5
2 log x

◆
.
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Another natural question appears which is what about Y -coordinates
of Pell equations in sequences? How about Yn 2 U for your favourite
set U? Here the problem is slightly di�erent. There are infinitely
many binary recurrences U such that Yn 2 U has two solutions n.
For example, this is so if 1 2 U and U contains infinitely many even
numbers. It is also so forU = {2m�1 : m � 1} since taking d = 22a�1
for some a, then both Y1 = 1 and Y3 = 22a+2 � 1 are in U. However,
this is best possible:

Theorem 13 (B. Faye and F. Luca, 2016.) If U = {Um}m�1 is a bi-

nary recurrent sequence of integers, then Yn = Um has at most two

solutions (n,m) provided d > d0(U), where d0(U) is e�ectively com-

putable.

In case U = {2m � 1 : m � 1}, one can take d0(U) = 1.
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1 Uniformly bounded local degrees

A field L ⇢ Q has bounded local degree at a prime number p if for
every valuation v of L extending the p-adic one there exists a constant
dp such that [Lv : Qp]  dp. We say that L has uniformly bounded

local degrees if the constants dp’s can be chosen independently on p.
Numbers fields are the first examples of fields with uniformly bounded

local degrees. More interesting examples are given by some infinite
extensions, namely the compositum of all the extensions of degree at
most d of a number field. These extensions have uniformly bounded
local degrees as shown in [4] by Bombieri and Zannier.

Furthermore if we assume the extension L to be Galois over a number
field, we can completely characterize the property of having uniformly
bounded local degrees with properties on the Galois group.

Theorem 1 Let K be a number field and L be a Galois extension of K .

Then L has uniformly bounded local degrees if and only if the group

Gal(L/K) has finite exponent.
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One implication is proved in [7], while the full statement is in [5].
We are interested in the following problem:

Question 1 Let L be a Galois extension of a number field K with Galois

group G. Is there a group theoretical property on G equivalent to the

boundedness of local degrees of L at some given primes?

2 Bogomolov property

The question about boundedness of local degrees is interesting also in
connection with the Bogomolov property, that we will recall in this
section.

We denote by h : Q ! R�0 the absolute logarithmic Weil height.
A field L ⇢ Q has the Bogomolov property if there exists a constant

C > 0 such that for every ↵ 2 L which is not 0 nor a root of unity, then

h(↵) � C.
Examples of fields with Bogomolov property are number fields as

a consequence of Northcott’s theorem. However, deciding whether a
given infinite extension of Q has the Bogomolov property is generally
a di�cult task. Some examples of fields with the above property are:

1. abelian extensions of a number field by the results of Amoroso
and Dvornicich when the base field is Q in [1], and by Amoroso
and Zannier for any number field in [2].

2. The field of totally real numbers, proved by Schinzel in [11].

3. The Galois extension of Q with bounded local degrees at some
prime. This result is due to Bombieri and Zannier in [4] and can
be seen as the p-adic analogue of Schinzel’s result mentioned
above.

In [3] Theorem 1.2 states, in particular, that the Bogomolov property
holds for any Galois extension L of a number field K having Galois

82



group G and such that LZ(G) has bounded local degrees at some primes,
where LZ(G) denotes the subfield of L fixed by the center Z(G) of G.

Following [3], the Bogomolov property can be defined also for
groups: a profinite group G has the Bogomolov property if, for ev-

ery number field K and for every Galois extension L of K , with Galois

group isomorphic to G, the field L has the Bogomolov property.
Let G be a profinite group such that for every number field K and for

every extension L of K with Galois group isomorphic to G the extension
LZ(G) has bounded degrees at some given primes, then by the above
mentioned results G has the Bogomolov property. In particular if
G/Z(G) has finite exponent, hence LZ(G) has uniformly bounded local
degrees, then G has the Bogomolov property; this case include G finite
or abelian.

A natural and still open question is the following:

Question 2 Are we able to characterize group G such that every real-

ization of G as a Galois group over a number field has bounded local

degree at some primes? More generally, can we found new groups with

the Bogomolov property?

Before going further, we remark that, as shown by Amoroso, David
and Zannier in [3], there are groups without the Bogomolov property.
Let Qtr be the field of totally real number, as shown in [11] it has the
Bogomolov property. However the Galois group G of Qtr/Q has not
the Bogomolov property. Indeed, let i be a solution of X2 + 1 = 0, the
group G can be realized as the Galois group of the extensionQtr(i) over
Q(i). Here we consider the sequence

↵n =

✓
2 � i
2 + i

◆1/n

and we get that h(↵n) ! 0. We observe that the elements ↵n have
absolute value 1 for every archimedean places: this fact su�ces to
show that they lies in Qtr(i).
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3 Bounded local degrees at some primes

In this section we give an answer to our first question; namely if, for a
Galois extension of a number field, the property of having bounded local
degrees at some prime can be completely characterized via theoretical
properties of the Galois group. The answer is negative as the following
result shows.

Theorem 2 Let S be a set of rationals primes and let K be a number

field. There exist groups G each admitting two realizations over K:

one with bounded local degrees at all primes in S and the other with

unbounded local degrees at all primes in S.

We recommend to look at [6] to get a more precise statement about
the properties that these groups G need to have. In particular the
groups used in the proof are infinite direct products of certain finite
groups Gm’s; clearly these products need to have unbounded exponent.

The key properties of the groups considered is that they guarantee
the existence of solutions of some specific Grunwald problems. To be
more precise let G =

Œ
m2Z>0 Gm and S = {p1, p2, p3, . . . }, we define

Tm the set of primes of K lying over {p1, . . . , pm}. Then, by the choice
of the Gm’s, for every family of cyclic groups

�
Gm,v  Gm

 
v2Tm there

exists a field extension Lm over K such that:

1. the field Lm is Galois over K with group Gm,

2. for every v 2 Tm the extension Lm has local Galois group at v
given by Gm,v  Gm.

Moreover the fields Lm’s can be chosen to be linearly disjoints. This
can be achieved for example by taking the groups Gm’s with coprime
orders.

The above groups Gm’s exist, thanks to the work of many authors on
the Grunwald problem. Examples of them are the followings:

1. abelian groups of odd order, due to results of Grunwald in [9]
and Wang in [12].
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2. Solvable groups of order prime to the number of roots of unity
of K , proven by Neukirch in [10].

3. Iterated semidirect products of abelian groups of order not di-
visible by the primes in S, by the result of Demarche, Lucchini-
Arteche and Neftin in [8].

Realization with bounded local degrees

We choose Gm,v to be trivial. Hence we get an extensions L1 with trivial
degrees at primes dividing p1, an extension L2 with trivial degrees at
primes dividing p1p2, and so on. Taking the compositum of all the
Lm’s, since they are disjoint, we can control the local degree at a prime
dividing pi with

[K : Q]
i�1÷
j=1

|Gm |

and so it has bounded local degrees at the primes in S.

Realization with unbounded local degrees

Since the exponent of G is not finite, there exists a sequence of indexes
M = {mn}n2Z>0 such that mn < mn+1 and the group Gmn have an
element of order n. Now if m = mn 2 M we choose Gmn,v to be a
cyclic group of order n for every v 2 Tmn ; if m <M we set Gm,v = 1.
Then proceeding as in the case of bounded local degrees we get linearly
disjoint extensions Lm’s such that their compositum has unbounded
local degrees at the prime in S, since if mn 2 M then the extension
Lmn has local degrees n for every prime in Tmn .

We finally observe that the Theorem above does not give us new
examples of group with Bogomolov property and that we still don’t
know if there exists a property on group that implies the boundedness
of the local degrees at some given prime. However, the result above
seems to suggest the fact that if such a property exists, a group that
satisfies it should not be a direct product.
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1 Representations associated to abelian varieties

In this talk, we will consider mod ` Galois representations attached to
abelian varieties over number fields, especially over Q.

Let A be an abelian variety of dimension g over a number field K .
Let ` � 2 be a prime number and A[`] the subgroup of `�torsion
points of A. Then the natural action of the absolute Galois group
GK = Gal(K̄/K) on the set of `�torsion points A[`] of A gives rise to
a continuous representation

⇢A,` : Gal(K̄/K) �! Aut(A[`]).

After a choice of basis of A[`] as a 2g�dimensional F`� vector space,
we get an isomorphism GL2g(A[`]) � GL2g(F`), and will still denote
by ⇢A,` the induced representation Gal(K̄/K) �! GL2g(F`). The
question we will be interested in is "how large can be its image?". We
won’t consider here the `�adic and the adelic representations.
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Remark 1 The initial motivation of such question is the Galois inverse

problem. It concerns whether or not every finite group appears as the

Galois group of some Galois extension of the rational numbers Q.

2 Open image theorems

The starting point of a lot of questions given below is the following
famous Serre’s open image theorem. This theorem, formulated on mod
` representation, ensures that for A a non CM elliptic curve, i.e, such
that EndK̄ (A) = Z over a number field K , and for ` great enough, the
image of the mod ` representation is as large as possible. The properties
of ⇢A,` are well understood if A is an elliptic curve with complex mul-
tiplication (CM), i.e, EndK̄ (A) , Z (see [3], section 4.5). It depends
on the decomposition of ` in the field of complex multiplication.

Theorem 1 (Serre - 1972) Let A/K be a non CM elliptic curve. Then

there exists BA,K > 0 such that for all ` > BA,K, ⇢A,`(GK ) = GL2(F`).

A natural question that arises is: does this result generalize to the
case of dimension g > 1?

First, notice that structures on A (coming from endomorphism, po-
larization, ...) impose some constraints on the image, Im(⇢), of ⇢.
For instance if A is principally polarized, which means that there is an
isomorphism between A and its dual Ǎ, given by an ample divisor, then
the Weil pairing induces a pairing on A[`] ⇥ A[`]

h, i : A[`] ⇥ A[`] �! µ`(K̄)

which is GK�equivariant so such that for all P,Q 2 A[`]

hP�,Q�i = hP,Qi� .
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As a consequence the image of ⇢A,` lies inside the general symplectic
group GSp(A[`], h, i) of A[`] for this pairing 1 . After a good choice
of basis GSp(A[`], h, i) is isomorphic to GSp2g(F`). Let recall briefly
that, the general symplectic group over F` of order 2g is the linear
group

GSp2g(F`) = {M : 9 a 2 F
⇤
`,

t
M JM = aJ}

where J is the matrix ✓
0 Ig

�Ig 0

◆
.

Remark 2 In particular GSp2(F`) = GL2(F`).

Serre proved the following partial generalization of Theorem 1 to the
case g > 1 :

Theorem 2 (Serre) Let A/K be a principally polarized abelian variety

of dimension g = 2 or 6 or odd such that End(A) = Z. Then there

exists BA,K > 0 such that for ` > BA,K, ⇢A,`(GK ) = GSp2g(F`).

This result is not true for any dimension g as shows a famous coun-
terexample of Mumford [7], for g = 4.

3 Some questions

A series of questions arises from Serre’s above theorem. In what follows
A will denote a principally polarized abelian variety of dimension g
over a number field K , and End(A) = Z, ` a prime number, and BA,K

a constant.

1. For a given A, can we determine an explicit bound BA,K?

1Let R be a commutative ring, M a finitely generated R�module, equipped with a
non-degenerate alternating bilinear form h , i. Then GSp(M, h , i) is the group of
' 2 AutR(M) such that for some a 2 R

⇥, h'v, 'w i = ahv,wi for all v,w 2 M .
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2. or at the contrary for a given `, can we give an explicit abelian
variety A` , such that ⇢A`,`(GK ) = GSp2g(F`)? or even a whole
family of such A` .

Let’s even ask something stronger.

3. (Uniformity conjecture) does there exist a constant B > 0 such
that for all prime number ` > B, and all abelian variety A,
⇢A,`(GK ) = GSp2g(F`)?

4. Does there exist an abelian variety A, such that for all `, ⇢A,`(GK ) =
GSp2g(F`)? and if so can we determine A explicitly?

Let first examine these questions more precisely in the case g = 1.

Question 1 is motivated by the fact that Theorem 1 is not e�ective in
all generality. In [3], Serre gave e�ective results for semi-stable elliptic
curves (see [[3], 5.4 proposition 21 and corollary 1). Later on, Serre
[4] gave the explicit upper bound:

BA,Q  c. log(NA)(log log NA)3

where NA is the conductor of the elliptic curve, and c an absolute (and
e�ectively computable) constant. However this bound is conditional
to GRH. In [5] Masser and Wustholz give a general upper bound for
BA,K :

BA,K  C · max(hA, d)�,
where d is the degree of the number field K, hA = log(h( j(A)), and �
and C are constants.

Over Q, Alain Kraus [9] and then Cojocaru [8] gave another uncon-
ditional bound in terms of the conductor using the modularity of elliptic
curves over Q, namely

BA,Q  C · NA · (log log NA)
1
2 .
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Moreover in [6] David Zywina gives the first general bounds [10]
of the index in terms of basic invariants of an elliptic curve A without
CM. He shows that the product 2÷

l exceptional for A
l  B

bA

A,Q,

where bA is the number of primes of bad reduction for A. The approach
used by Zywina was also limited to Q. Zywina also gave an explicit
elliptic curve answering to question 4 (so to question 3).

The third question is an interesting and largely open question, even
for non CM elliptic curves over Q. It is known as Serre’s uniformity
conjecture (in the case of elliptic curves).

Note that all the preceding results deal with abelian varieties of di-
mension g = 1. In his thesis [2] Lombardo gives explicit results for
question 1 for some cases of abelian varieties of dimension g � 1, like
products of non-CM elliptic curves over a number field K .

In what follows, we focus on questions 2 and 4.

4 Some progress on questions 2 and 4 for g > 1

In the sequel we will focus on questions 2 and 4, and we set K = Q
and g � 3. The following results are motivated and based on ideas of
previous works for g = 2 of lot of authors, as for instance, Le Du�,
Arias-de-Reyna, Vila, Dieulefait.

We start with the following theorem which concerns the Jacobian,
Jac(C), of genus 3 curve. It was independently proved by Zywina, and
by Samuele Anni et al.

2A prime number ` is exceptional, relative to a pair (A,K), if the map ⇢A,` is not
surjective.
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Theorem 3 (Anni-Lemos-Siksek, Zywina 2016) There is an explicit

genus 3 curve C/Q such that for all prime number ` � 3, ⇢Jac(C),`(GQ) =
GSp6(F`).

The curve, given by Zywina is the quartic plane curve given by the
equation

x
3y � x

2y2 + x
2
z

2 + xy3 � xyz
2 � xz

3 � y4 + y3
z � y2

z
2 � yz

3 = 0,

and the curve given by Anni, Lemos, and Siksek is an hyperelliptic
curve

C : y2 + (x4 + x
3 + x + 1)y = x

6 + x
5.

In the following theorem, Arias de Reyna et al. gave another answer
to question 2: for a given prime number `, it gives an infinite family of
abelian varieties answering to the question.

Theorem 4 ([1]) Let ` � 13 be a prime number. For all primes p , q

such that p , `, q > 1.82`2, there exists fp, fq 2 Z[x, y] of same type,

such that for all f 2 Z[x, y] of same type, if

f ⌘ fq (mod q) and f ⌘ fp (mod p
3) (1)

then f defines a genus 3 curve C such that ⇢Jac(C),`(GQ) = GSp6(F`).

Here we say that a polynomial f (x, y) is of 3�hyperelliptic type if it
is of the form f (x, y) = y2�g(x), where g(x) is a polynomial of degree
7 or 8 and f (x, y) is of quartic type if it is homogeneous of total degree
4. Two polynomials are of the same type if both of them are either of
3�hyperelliptic type or of quartic type. In Theorem 4, fp is explicit
and fq is algorithmically computable for a given `.

Finally the following is the first result which answers to question 4 for
an infinite number of g. This result is related to the double Goldbach
conjecture proved by Montgomery.
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Theorem 5 (Anni-Dokchitser, 2017) Let g be an integer such that

2g + 2 satisfies the double Goldbach conjecture. Then there exist an

explicit N 2 Z and an explicit h0 2 Z monic of degree 2g + 2 such that

if

1. h ⌘ h0 (mod N),

2. for all p - N, h (mod p) has no roots of multiple > 2.

then y2 � h(x) defines a hyperelliptic curve C such that for all ` � 3,

⇢Jac(C),`(GQ) = GSp2g(F`).

An integer n satisfies the double Goldbach conjecture if n = q1+q2 =

q4+q5 distinct pairs of primes and none of them being the largest prime
 n. Note that the hypothesis is not true for g = 1, 2, 3, 4, 5, 7, and 13.

5 Common ideas

In this last paragraph, we will give some ideas common to the articles
establishing the above results. It is now a classical strategy to use the
following proposition to force the image to be large.

Proposition 1 The following two conditions imply that ⇢A,`(GK ) =
GSp2g(F`).

1. There exist a transvection in ⇢A,` .

2. There exist F in Im(⇢A,`) a non zero trace, irreducible (mod `).

The above proposition is due to a partial classification of subgroups
of GSp2g(Fl) and the fact that

m : GSp2g(Fl) �! F
⇤
l

restricted to ⇢A,l is surjective.
In the following proposition Hall gives conditions which ensure the

existence of a transvection (condition 1).
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Proposition 2 If A has potentially semistable reduction of toric dimen-

sion 1 above a prime number p (TR1), then for all ` - 6p|�|, ⇢A,`(Ip) is

cyclic generated by a transvection.

The condition (TR1) means that there is a finite extension L/K so
that the special fiber at p of the Néron model of A/L over the ring of
integers OL lies in an extension

1 ! G
1
m ! Akp ! B ! 1

where B is an abelian variety. We denote by � = A
Fp
/A0

Fp
the com-

ponent group of A
Fp

, and Ip is the inertia group at a prime p.

The above result allows Hall to establish the following.

Theorem 6 (Hall) Let A/K be a principally polarized abelian variety

of dimension g, with End(A) = Z, and satisfying (TR1). Then there

exists BA,K > 0 such that for all ` > BA,K, ⇢A,`(GK ) = GSp2g(F`).

It is possible to prescribe (TR1) for Jac(C) at p by controlling the
reduction of C above p. This is the strategy adopted by [1] and Anni-
Dokchitser. The ideas di�er about condition 2.

In [1], Arias de Reyna et al. use a second auxiliary prime q to pre-
scribe condition 2. By Chebotarev’s theorem, it is natural to look for
elements F of condition 2 as images by ⇢ of Frobenius elements Frobq.
The relation with Frobenius endomorphisms of abelian varieties is
given by Honda-Tate theory. More precisely, Arias et al. show that for
` � 13 and q > 1.82`2 there exists an ordinary Weil�q�polynomial
wich has non zero trace and is irreducible modulo `. By Honda-Tate
theory, such a Weil polynomial defines an isogeny class of simple ordi-
nary abelian varieties of dimension 3. By results of Howe, Oort-Ueno
and Serre, there exists a curve Cq defined over Fq with Jac(Cq) in
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this isogeny class. This ensures that Condition 2 holds for every curve
reducing to Cq.

This method allows to obtain many distinct realisations of GSp6(F`)
as a Galois group over Q. However it is limited because Oort-Ueno is
specific to g = 3, and Cq is not explicit in all generality.
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Pieter Moree

Irregular behaviour of class
numbers and Euler-Kronecker
constants of cyclotomic fields:

the log log log devil at play
Written by Pietro Sgobba

We study two invariants for cyclotomic number fields Q(⇣q), where

q is a prime, namely the first factor of the class number and the Euler-

Kronecker constant. In particular, we consider the connection between

a conjecture by Kummer on the asymptotic behaviour of the former and

a conjecture by Ihara on the positivity of the latter.

1 The Euler-Kronecker constant

The Euler-Mascheroni constant � is defined as

� = lim
n!1

 
n’

k=1

1

k
� log n

!
= 0.577...

and in general we define the Stieltjes constants as

�r = lim
n!1

 
n’

k=1

log
r

k

k
� log

r+1
n

r + 1

!
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for r � 0, which arise as the coe�cients of the Laurent series expansion

of the Riemann zeta function:

⇣(s) =
1’
n=1

1

ns
=

1

s � 1
+

1’
r=0

(�1)r
r!
�r (s � 1)r .

In particular, we have

⇣(s) = 1

s � 1
+ � +O(s � 1) .

Recall that the Dedekind-zeta function of a number field K is defined

as

⇣K (s) =
’
a

1

(Na)s , Re(s) > 1 ,

where a runs over all integral ideals of K . The Laurent series of ⇣K is

such that

⇣K (s) =
c�1

s � 1
+ c0 +O(s � 1) .

The Euler-Kronecker constant of K , introduced by Ihara, is then defined

as EKK := c0/c�1, which is the constant term in the logarithmic

derivative of ⇣K (s) at s = 1:

lim
s!1

✓
⇣ 0K (s)
⇣K (s)

+
1

s � 1

◆
= EKK .

For example, we have EKQ = �. The Euler-Kronecker constant satis-

fies

EKK = lim
x!1

 
log x �

’
Npx

log Np

Np � 1

!
,

where p runs over the primes of K , so that for cyclotomic fields Q(⇣q),
setting �q := EKQ(⇣q ), the main contribution is given by the rational

primes p which split completely in Q(⇣q):

�q = lim
x!1

 
log x � (q � 1) ·

’
px

p⌘1 mod q

log p

p � 1

!
+ smaller order terms .
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Under the assumption of the Extended Riemann Hypothesis (ERH),

Ihara, and by di�erent methods, Ford, Luca and Moree showed the

following approximation:

�q = log(q2) � q ·
’
pq2

p⌘1 mod q

log p

p � 1
+O(log log q) . (1)

Unconditionally this estimate holds for all C > 0 and for all but

O(⇡(u)/(log u)C) primes q  u. Assuming the Elliot-Halberstam con-

jecture (Conj. 1) we may replace q
2

by q
1+✏

in (1).

2 Ihara’s conjectures

We first introduce two standard conjectures.

Conjecture 1 (Elliot-Halberstam (EH)). For every ✏ > 0 and A > 0

we have ’
qx1�✏

���⇡(x; q, a) � li(x)
'(q)

��� ⌧A,✏
x

log
A

x

,

where ⇡(x; q, a) denotes the number of primes p less than x with p ⌘
a mod q, and ' is Euler’s totient function.

We say that a set {b1, . . . , bk} of positive integers is admissible if

the congruence n
Œk

i=1
(bin+ 1) ⌘ 0 mod p has < p solutions for every

prime p.

Conjecture 2 (Hardy-Littlewood (HL)). If {b1, . . . , bk} is admissible,
then the number of primes n  x for which the integers bin + 1 are all
prime is

� x

log
k+1

x

.

Ihara’s conjecture concerns the positivity of the constants �q, and it

gives bounds for the ratio �q/log q. In fact, it is known unconditionally
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that for a density 1 set of primes q there exists a constant c > 0 such

that

�c log log q 
�q

log q
 2 + ✏ .

Assuming ERH, this property is true for all su�ciently large primes q.

Conjecture 3 (Ihara, 2009). Let q � 3 be a prime. We have:

(i) �q > 0 (‘very likely’);

(ii) for fixed ✏ > 0 and q su�ciently large

1

2
� ✏ 

�q
log q

 3

2
+ ✏ .

However �q can be negative [1]:

�964477901 = �0.1823... ,

and furthermore, assuming HL, one can prove that this happens in-

finitely often:

Theorem 1. On a quantitative version of the HL conjecture we have

lim inf
q!1

�q
log q

= �1 .

In favour of Ihara’s conjecture we have:

Theorem 2. Under the EH conjecture, for a density 1 sequence of
primes q we have

1 � ✏ <
�q

log q
< 1 + ✏

(that is, �q has normal order log q).
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Sketch of proof of Theorem 1. Assume ERH and the HL conjecture.

We need to find b1, . . . , bs such that the integers n, 1 + b1n, 1 + b2n, . . .
satisfy the conditions of the HL conjecture and

s’
i=1

1

bi
> 2 .

We may take {bi} to be the sequence of greedy prime o�sets, namely

{2, 6, 8, 12, 18, 20, 26, . . .}, and s = 2088. Then by the HL conjecture

q, 1+b1q, 1+b2q, . . . , 1+bsq are infinitely often all prime with 1+bsq 
q

2
, and so we have

q

’
pq2

p⌘1 mod q

log p

p � 1
> q log q

s’
i=1

1

biq
> log q

s’
i=1

1

bi
> (2 + ✏0) log q .

The proof is now concluded on invoking estimate (1). ⇤

The measure of an admissible set S is defined as

m(S) =
’
s2S

1

s
.

Theorem 1 is a consequence of the fact that there exists an admissible

set S with m(S) > 2. Ford, Luca and Moree gave a short proof of this

fact based on a result by Erdös from 1961. However, the divergence

result is due to Granville and it confirmed a conjecture of Erdös from

1988:

Theorem 3 (Granville [2]). There is a sequence of admissible sets
S1, S2, . . . such that limi!1 m(Si) = 1.

Proposition 1 (Granville [2]). There is an admissible set S with ele-
ments  x, such that m(S) � (1 + o(1)) log log x. For any admissible
set we have m(S)  2 log log x.
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3 Analogy with Kummer’s Conjecture

Kummer conjectured in 1851 that

h1(q) =
h(q)
h2(q)

⇠ G(q) := 2q

⇣
q

4⇡2

⌘ q�1

4

,

where h(q) and h2(q) are the class numbers ofQ(⇣q) and of its maximal

real subfieldQ(⇣q)+ := Q(⇣q+ ⇣�1

q ), respectively. Define the Kummer’s
ratio as r(q) := h1(q)/G(q). Then the conjecture amounts to

r(q) ⇠ 1 .

Masley and Montgomery (1976) showed that |log r(q)| < 7 log q for

q > 200 and used this result to determine all cyclotomic fields of class

number 1. Ram Murty and Petridis (2001) showed that there exists

a constant c > 1 such that for a density 1 set of primes q we have

1/c  r(q)  c.

Both �q and h1(q) are related to special values of Dirichlet L-series.

Hasse (1952) showed that

r(q) =
÷

�(�1)=�1

L(1, �) ,

where � runs over all the odd characters modulo q. Furthermore, using

the definition of the Euler-Kronecker constant, one can find the Taylor

series expansion around s = 1:

⇣Q(⇣q )(s)
⇣Q(⇣q )+(s)

= r(q)
⇣
1 + (�q � �+q )(s � 1) +Oq((s � 1)2)

⌘
,

where �+q := EKQ(⇣q )+ , which involves both �q and h1(q).
Both quantities log r(q) and (�q � �+q )/log q are related to the distri-

bution of primes p ⌘ ±1 mod q. In fact, they are analytically similar

in the following way

�q � �+q
log q

⇡ (q � 1)
2

 ’
pq(log q)A
p⌘1 mod q

1

p
�

’
pq(log q)A
p⌘�1 mod q

1

p

!
⇡ log r(q) . (2)
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If we assume HL and EH, then Kummer’s conjecture is false. We

have the following result:

Theorem 4 (Granville [2]). Assume both the HL and the EH conjecture.
Then r(q) has [0,1] as set of limit points.

Similarly, in view of (2), we have that, assuming both HL and EH,

the sequence (�q � �+q )/log q can be shown to be dense in (�1,1) (see

[3]). In the same way, exploiting the analytic similarity of �q/log q

with 1�2|log r(q)|, the sequence �q/log q is dense in (�1, 1] (see [1]).

Exploiting these results, we obtain the following speculations, where

the log log log ‘devil’ appears:

1. (Granville [2]) the Kummer’s ratio r(q) asymptotically satisfies

(�1 + o(1)) log log log q  2 log r(q)  (1 + o(1)) log log log q ;

2. (Languasco, Moree, Saad Eddin, Sedunova [3])

(�1+o(1)) log log log q  2

(�q � �+q )
log q

 (1+o(1)) log log log q ;

3. (Ford, Luca, Moree [1])

�q
log q

� (�1 + o(1)) log log log q .

These bounds are best possible in the sense that there exist infinite

sequences of primes q for which all the indicated bounds are attained.
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Classification of Number Fields
with Minimum Discriminant

Francesco Battistoni

A classic problem in Algebraic Number Theory consists in detect-
ing the minimum absolute value for the discriminant dK of the num-
ber fields K having fixed degree n and fixed signature (r1, r2), where
n = r1 + 2r2. A related topic is the research of methods to enumerate
and list all the number fields of fixed degree and signature with dis-
criminant less than a given bound.
Starting from seminal works by Minkowski and Hermite, the problem
of minimum discriminant was approached during the twentieth century
by means of miscellaneous techniques, from Analytic Number Theory
to the study of algebraic lattices. The joint e�ort of many mathemati-
cians, including Pohst, Martinet and Odlyzko, allowed to construct lists
of number fields with low discriminant for any degree n  7 and for
the signatures (8, 0), (0, 4) in degree 8, (9, 0) in degree 9.

We present an algorithmic procedure to list all number fields of given
signature with discriminant less than a specific bound. First, we in-
troduce the main theoretical ideas on which the procedure relies: on
one hand, we have results from Geometry of Numbers which show that
for any number field K there is an algebraic integer ↵, called HPM-
element of K , such that the coe�cients of its minimum polynomial
p↵ are bounded by functions depending only on dK and the degree n.
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Thus, in order to classify the fields, we look for minimum polynomials
p↵ of HPM-elements ↵.
On the other side, we use Explicit Formulae of Dedekind Zeta func-
tions in order to choose smart upper bounds for dK , so that in the
algorithmic procedure one can consider only number fields of given
signature which do not admit prime ideals of norm  5. This arith-
metical condition yields strict properties on the minimum polynomials
p↵ of HPM-elements ↵.
Finally, we combine the techniques above and we give an instance of the
algorithmic procedure: we show how the aforementioned conditions
allow to create a list of minimum polynomials p↵ and which additional
conditions they must satisfy in order to not be discarded by the algo-
rithm.

In a joint work with B. Allombert and K. Belabas we implemented
the procedure in a program running on the computer algebra PARI/GP
and we used it to get minimum discriminants and fields with low dis-
criminant for signatures (2, 3), (4, 2) and (6, 1) (completing thus the
degree 8 case) and signature (1, 4). Work on the signature (3, 3) is
ongoing.
Although any number field given as output was previously known,
the procedure showed that they are the only number fields with low
discriminant for their respective signatures.
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Summary of results on Algebraic
Geometry codes over abelian

surfaces containing no absolutely
irreducible curves of low genus

Yves Aubry, Elena Berardini, Fabien Herbaut & Marc Perret

We provide a theoretical study of Algebraic Geometry codes con-

structed from abelian surfaces defined over finite fields. We give a

general bound on their minimum distance and we investigate how this

estimation can be sharpened under the assumption that the abelian sur-

face does not contain absolutely irreducible low genus curves. We state

here our main results which will appear in a forthcoming paper (arXiv

1904.08227).

Theorem. Let A be an abelian surface defined over Fq of trace Tr(A).
Let m = b2pqc. Then the minimum distance d of the code C(A, rH)
satisfies

d � #A(Fq) � rH
2(q + 1 � Tr(A) + m) � r

2
mH

2/2. (1)

Moreover, if A is simple and contains no absolutely irreducible curves
of arithmetic genus ` or less for some positive integer `, then
if
q

2`
H2

 r 
p

2(q+1�Tr(A)�m�
p
`(`�1))

m

p
H2`

we have

d � #A(Fq) � r

r
H2

2`
(q + 1 � Tr(A) + (` � 1)m) (2)
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otherwise,

d � #A(Fq) � (q + 1 � Tr(A)) � m(r2
H

2/2 � 1) � r

r
H2

2
(` � 1). (3)

It is worth to notice that if A is simple then we can take ` = 1 and

that the bound (2) obtained for ` = 2 improves the one obtained for

` = 1 for q su�ciently large. This leads us to investigate the case of

abelian surfaces with no absolutely irreducible curves of genus one nor

two. We obtain the following proposition.

Proposition. The bound on the minimum distance (2) of the previous
theorem holds when taking ` = 2 in the two following cases:

1. Let A be an abelian surface defined over Fq which does not admit
a principal polarization. Then A does not contain absolutely
irreducible curves of arithmetic genus 0, 1 nor 2.

2. Let q be a power of a prime p. Let E be and elliptic curve defined
over Fq2 of Weil polynomial fE/Fq2

(t) = t
2 � Tr(E/Fq2)t + q

2.
Let A be the Fq2/Fq-Weil restriction of the elliptic curve E . Then
A does not contain absolutely irreducible curves defined over Fq
of arithmetic genus 0, 1 nor 2 if and only if one of the following
cases holds:

a) Tr(E/Fq2) = 2q � 1;
b) p > 2 and Tr(E/Fq2) = 2q � 2;
c) p ⌘ 11 mod 12 or p = 3, q is a square and Tr(E/Fq2) = q;
d) p = 2, q is nonsquare and Tr(E/Fq2) = q;
e) q = 2 or q = 3 and Tr(E/Fq2) = 2q.
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On zero-sum subsequences in a

finite abelian p-group of length not

exceeding a given number

Bidisha Roy and R. Thangadurai

Let G be a finite abelian additive group with exponent exp(G). A

sequence S over G of length ` is written as S = (g1, g2, . . . , g`) with

gi 2 G, not necessarily distinct. A sequence S over G of length ` is

called a zero-sum sequence if g1 + g2 + · · · + g` = 0.

For a given positive integer k � 1, a constant sk(G) is defined to

be the least positive integer t such that given any sequence S over G of

length |S | � t contains a zero-sum subsequence of length m where m is

an integer with 1  m  k. Then, the well-known Davenport constant,

D(G), is nothing but s |G | (G) and the short zero-sum constant ⌘(G) is

nothing but sexp(G)(G).
In 2010, Schmid and Zhuang [1] conjectured the following.

Conjecture 1 ([1]) Let G be a finite abelian p-group with D(G) 
2 exp(G) � 1. Then ⌘(G) = 2D(G) � exp(G).

In [2], authors proved the following result which, in particular, re-

solves the above conjecture for a large class of finite abelian p-groups.

Theorem 1 [2] Let H be a finite abelian p-group with exponent exp(H) =
p
m

for some integer m � 1 and for a prime number p > 2r(H) where
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r(H) is the rank of H. Suppose the Davenport constant D(H) satisfies

D(H) � 1 = kp
m + t for some integers k � 1 and 0  t  p

m � 1. Let

G = Cpn � H be a finite abelian p-group for some integer n satisfying

p
n � 2(D(H)�1). Let ` be any integer satisfying ` = ap

m+ t
0
for some

integer a satisfying 0  a  k � 1 and for some integer t
0

satisfying

0  t
0  t. Then, we have

sexp(G)+`(G)  exp(G) + 2(D(H) � 1) � ` = 2D(G) � exp(G) � `.

In particular, we get ⌘(G) = 2D(G) � exp(G); when H � Cpm and

n � m + 1, for all integers 0  `  p
m � 1, we get

sexp(G)+`(G) = 2D(G) � exp(G) � `.
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Kummer Theory for Number Fields
Antonella Perucca, Pietro Sgobba, Sebastiano Tronto

Let K be a number field, and G a finitely generated subgroup of K⇥

having positive rank r . We may suppose without loss of generality that
G is torsion-free. For any M and N with N | M we want to compute
the degree over K(⇣M ) of the Kummer extension K

⇣
⇣M,

N
p

G
⌘
. This

degree deg(M, N) divides Nr and it is known that the quotient

C(M, N) := Nr

deg(M, N)

divides a constant which is independent of M and N (a direct proof
can be found in [2]). The ratio C(M, N) can be seen as a failure of
maximality for the Kummer extension: it is in fact the product over all
prime divisors ` of N of two numbers, namely the `-adic failure

C(`n, `n) = `nrh
K
⇣
⇣`n,

`n
p

G
⌘

: K (⇣`n )
i

where n = v`(N), and the adelic failure (with respect to `)
h
K
⇣
⇣`n,

`n
p

G
⌘
\ K (⇣M ) : K (⇣`n )

i
.

The `-adic failure is explicitly computable [1]: the algorithm involves
the choice of a suitable basis of G, where the generators show all the
divisibility properties of G. For example, if G = h12, 18i = h63, 18i
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over Q, it is convenient to use the latter basis to compute the 3-adic
failure. To control the adelic failure we make use of Schinzel’s Theorem
on abelian radical extensions. For example, the adelic failure for G =
h5i is due to the fact that

p
5 2 Q(⇣5).

For K = Q, there are explicitly computable integers M0 and N0 such
that

C(M, N) = C(gcd(M,M0), gcd(N, N0))
for all M and N . In particular there are formulas (with a case distinction)
describing C(M, N) for all M and N . Moreover, there is a concrete and
e�cient algorithm to compute these degrees for all M and N . Such an
algorithm has been implemented in Sagemath by Tronto.
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Statistics of moduli space of
vector bundles

Sampa Dey

Let Fq be a finite field of characteristic p with q elements(i.e. q = p
n
,

for some positive integer n) and V be an algebraic variety defined over the

algebraic closure of Fq denoted by Fq . Let Nq(V) denote the number of Fq-

rational points of V . Giving an estimate of Nq(V) is an active area of research

in finite field theory as well as in number theory (see [2] for a recent survey

on this topic).

Assume that q is odd and d is a positive integer � 3. Let Hd,q be a family

of curves given by the equation y2 = F(x), where F in Fq[x] is a degree d

monic, square-free polynomial. Every such curve corresponds to an a�ne

model of a unique projective hyperelliptic curve H with genus g =


d � 1

2

�
.

The measure on Hd,q is given by the uniform probability measure on the set

of such polynomials F. Let JH be the Jacobian of the hyperelliptic curve H

which is an abelian variety of dimension g. In terms of vector bundles, one can

see that JH is the moduli space of vector bundles of rank 1 and degree 0. For a

fixed g and growing q, Katz and Sarnak showed that
p

q(log Nq(JH )�g log q)

is distributed as the trace of a random 2g ⇥ 2g unitary symplectic matrix [3,

Chapter 10, Variant 10.1.18]. On the other side, when the finite field is fixed

and the genus g grows, Xiong and Zaharescu [4] found the limiting distribution

of log Nq(JH ) � g log q in terms of it’s characteristic function and when both

the genus and the finite field grow, they showed that
p

q(log Nq(JH )� g log q)

has a standard Gaussian distribution.

We have studied similar problems for the moduli space MH,L(2, 1) of rank 2

stable vector bundles associated to H and any degree one line bundle L on

H = H ⇥Fq Fq . MH,L(2, 1) is a non-abelian, smooth projective variety of
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dimension 3g � 3. We find the limiting distribution of log Nq(MH,L(2, 1)) �
3(g � 1) log q as g grows and q is fixed, in terms of the characteristic function

and interestingly when both the genus and the size of the finite field grow we

see that q
3/2

�
log Nq(MH,L(2, 1)) � 3(g � 1) log q

�
has a standard Gaussian

distribution [see [1] for more details].

Theorem: If both q, g ! 1,then for any H in Hd,q, the quantity

q
3/2

�
log Nq(MH,L(2, 1)) � 3(g � 1) log q

�
is distributed as a standard Gaussian. More precisely, for any x in R we have,

lim
q!1
g!1

1

#Hd,q
#

n
H 2 Hd,q : q

3/2
�
log Nq(MH,L(2, 1)) � 3(g � 1) log q

�
 x

o

=
1

p
2⇡

π
x

�1

e
�t

2
/2

dt.
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Approximations by Signed

Harmonic Sums and the

Thue–Morse Sequence

Sandro Bettin, Giuseppe Molteni, Carlo Sanna

We study how well a real number ⌧ can be approximated by signed
harmonic sums, that is, sums of the form

n’
m= 1

sm
m
,

where s1, . . . , sn 2 {�1,+1}.

A first approach consists of understanding how much small can be the
following quantity

mn(⌧) := min
(�����⌧ �

n’
m= 1

sm
m

����� : s1, . . . , sn 2 {�1,+1}
)
,

as n ! +1. In this direction, we proved the following result:

Theorem 1 For all ⌧ 2 R and " > 0, we have

mn(⌧) < exp
⇣
�
⇣

1
log 4 � "

⌘
(log n)2

⌘
,

for all su�ciently large positive integers n, depending on ⌧ and ".
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A second approach consists of choosing the sequence of signs “greed-
ily”. Precisely, for every ⌧ 2 R, we define

�n(⌧) :=
n’

m= 1

sm(⌧)
m

and sn(⌧) :=
(
+1 if ⌧ � �n�1(⌧)
�1 if ⌧ < �n�1(⌧)

for all integers n � 0 (with the convention �0(⌧) := 0). It is not di�cult
to see that �n(⌧) ! ⌧, as n ! +1. More precisely, |�n(⌧) � ⌧ | 
2/(n + 1) for all n following the first sign change. More interestingly,
we prove the following:

Theorem 2 We have

lim inf
n!+1

log |⌧ � �n(⌧)|
(log n)2 = � 1

log 4,

for almost all ⌧ 2 R, respect to Lebesgue measure.
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Multidimensional p-adic continued
fractions

Nadir Murru, Lea Terracini

Given a m-tuple of real numbers as input, the Jacobi–Perron (JP)
algorithm returns m sequences of integers. We define the p-adic JP
algorithm as follows: given (↵(1)0 , ..., ↵

(m)
0 ) in Qm

p ,

a(i)n = s(↵(i)n ), ↵(1)n+1 =
1

↵(m)
n � a(m)

n

, ↵(i)n+1 =
↵(i�1)
n � a(i�1)

n

↵(m)
n � a(m)

n

,

where s is the Browkin floor function, defined by s(↵) � ↵ 2 pZp,
s(↵) 2 Z

h
1
p

i
\
�
� p

2 ,
p
2
�
. The output sequences [(a(1)n )1n=0, ..., (a

(m)
n )1n=0]

represent a multidimensional continued fraction (MCF) converging
to the starting m–tuple and they satisfy the convergence conditions
|a(1)n |p > 1 , for n � 1, |a(i)n |p < |a(1)n |p, for i = 2, . . . ,m + 1, n � 1.
Concerning finiteness and rational dependence, we proved:

Theorem 1 Assume that (↵(1)0 , . . . , ↵
(m)
0 ) 2 Qm. Then the p-adic JP-

algorithm stops in a finite number of steps (bounded by ht(↵(1)0 , . . . , ↵
(m)
0 ).

Theorem 2 Assume m = 2 and (↵, �, 1) linearly dependent over Q : if
the p-adic JP-algorithm does not stop then vp(an) = �1 for infinitely
many n.
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Conjecture 1 If (↵(1)0 , ..., ↵
(m)
0 , 1) are linearly dependent over Q then

the associated p-adic MCF is either finite or periodic.

We also investigated periodicity; consider a purely periodic MCF of
period N , i.e., a(i)(k+N ) = a(i)k for every k 2 N, and define

M = A0A1 . . .AN�1, where An =
©≠≠≠
´

a(1)
n 1 0 ... 0

a(2)
n 0 1 ... 0
...
...
...
...
...

a(m)
n 0 0 ... 1
1 0 0 ... 0

™ÆÆÆ
¨
.

Then (↵(1)0 , . . . , ↵
(m)
0 , 1) is an eigenvector for M. Let µ 2 Qp be the

associated eigenvalue, and P(X) be the characteristic polynomial. We
proved

• µ is a strictly dominant eigenvalue of M, and every root of P in
Qp other than µ has p-adic norm < 1.

• Q(µ) = Q(↵(1), . . . , ↵(m)) and µ < Q.

• If N = 1 then P does not have any root in Q.
If m = 2 and N = 2 then P is irreducible over Q unless the
following conditions are verified: one between a0 and a1 (say
a0) is of the form ± 1

p + w with w 2 Z, |w |  p�1
2 ,w , 0; and

either v(a1p + 1) = v(a1) + 1 or a1 is of the form ± 1
p + u with

u 2 Z, |u|  p�1
2 , u , 0.

The last fact allows to provide examples of p-adicQ-linearly dependent
p-adic pairs with infinite periodic MCF.
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