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Preface

This volume is a collection of papers selected and peer reviewed from the more than
100 presented at the International Conference on Mathematical and Statistical
Methods for Actuarial Sciences and Finance–MAF2022, held at the University of
Salerno from 20 to 22 April 2022.

In its organizational phase, the course of the COVID-19 pandemic was still
unpredictable, and the MAF2022 steering committee made the decision to hold the
event in a hybrid form, online or in-person, leaving each participant free to choose
the most appropriate mode of participation. Nevertheless, we have always hoped to
have the widest possible participation in presence, both as a desired sign of nor-
mality and as a return to the tradition of the conference, always characterized by
cultural and human exchanges that only in presence can be fully realized.

This year’s conference, organized by the Department of Economics and
Statistics of the University of Salerno with the collaboration of the Department of
Economics of the University of Venice Cà Foscari, is the tenth in a two-year series
that began in 2004.

It was in fact in 2003 that the mathematicians and statisticians of the Department
of Economics and Statistics of the University of Salerno, colleagues and friends
among them, conceived and grew the purpose of developing through scientific
meetings the cooperation and exchange of ideas among those who, like them, were
engaged in research in actuarial science and finance. The enthusiasm about the
initiative was always based on the deep conviction that this interaction would surely
bear good fruit.

And so, the initiative has followed regularly, availing since 2008 of the valuable
collaboration of the Department of Economics of the University of Venice Cà
Foscari.

The first six editions were held in Italy, namely in 2004 and 2006 in Salerno, in
2008 in Venice, in 2010 in Ravello (Salerno), in 2012 again in Venice and in 2014
in Vietri sul Mare (Salerno). The international dimension of the conference has
grown over time, attracting a wider and wider audience. Thus, in 2016 the MAF
was held in Paris and in 2018 in Madrid. The 2020 edition, already suffering from
the COVID-19 pandemic, was held in a fully online version from Venice.
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This tenth edition confirms the growing interest of the international scientific
community towards the initiative, with about 200 participants, more than 170
scientific contributions proposed in the form of abstracts or papers and four pres-
tigious plenary speakers, namely

Prof. Elsa Fornero, Honorary Professor, University of Turin, who presents an
invited talk entitled: “Reform, Inform, Educate”: a new paradigm for the sustain-
ability of pension system;
Prof. Massimiliano Caporin, University of Padua, who presents an invited talk
entitled: Realized Covariance Modelling, Forecast Error Variance Decompositions
and a Model-Based Diebold-Yilmaz Index;
Prof. Marcello Galeotti, University of Florence, who presents an invited talk
entitled: Applications of Game Theory to Risk Models: Evolutionary and
Cooperative Approaches;
Dr. Michel Dacorogna, Prime Re Solutions, Zug, Switzerland, who presents an
invited talk entitled: Pro-Cyclicality Beyond Business Cycles: The Case of
Traditional Risk Measurements.

Since 2006, all editions of the conference have been accompanied by a book
published by Springer, a product that has often been counted among the most
downloaded on the platform. Also, this tenth edition proposes the associated book,
with the aim of offering the selected scientific contributions in a concise form of
maximum 6 pages, in which the authors present their idea and the methodology
behind its development, providing, when possible, an illustrative application.

The goal is to create a forum for comparison of ideas, topics and research
perspectives, which embodies and represents at best the soul of MAF as a place of
meeting and scientific exchange.

Several are the research areas to which the papers are dedicated with a focus on
applicability and/or applications of the results:

Actuarial models, analysis of high-frequency financial data, behavioural finance,
carbon and green finance, credit risk methods and models, dynamic optimization in
finance, financial econometrics, forecasting of dynamical actuarial and financial
phenomena, fund performance evaluation, insurance portfolio risk analysis, interest
rate models, longevity risk, machine learning and soft computing in finance,
management in insurance business, models and methods for financial time series
analysis, models for financial derivatives, multivariate techniques for financial
markets analysis, neural networks in insurance, optimization in insurance, pricing,
probability in actuarial sciences, insurance and finance, real-world finance, risk
management, solvency analysis, sovereign risk, static and dynamic portfolio
selection and management, trading systems.

In its almost twenty years, the initiative has always availed itself of the support
of the Departments of Economics and Statistics of the University of Salerno (Italy)
and of the Department of Economics of the University Ca’ Foscari of Venice (Italy)
and nonetheless of the scientific associations:

vi Preface



• AMASES—Association for Mathematics Applied to Social and Economic
Sciences

• SIS—Italian Statistical Society.

Further, we would also like to express our deep gratitude to the members of the
scientific and organizing committees and to all the people whose collaboration
contributed to the success of the MAF2022 conference. In particular, our heartfelt
thanks go to Giovanna Bimonte and Antonio Naimoli, who have worked unstint-
ingly with great enthusiasm and efficiency, continually showing with their work the
sharing of the aims of the initiative. We would also like to thank all the participants
for their precious and indispensable contribution.

Finally, we are pleased to inform you that the organizational machine is already
at work, looking forward to the MAF2024 edition.

Marco CorazzaApril 2022
Cira Perna

Claudio Pizzi
Marilena Sibillo
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Abstract. The objective of the present paper is to propose a new method to
measure the recovery performance of a portfolio of non-performing loans (NPLs)
in terms of recovery rate and time to liquidate. The fundamental idea is to draw
a curve representing the recovery rates during time, here assumed discretized, for
example, in years. In this way, the user can get simultaneously information aboutAQ1

recovery rate and time to liquidate of the portfolio. In particular, it is discussed howAQ2

to estimate such a curve in presence of right censored data, i.e. when the NPLs
composing the portfolio have been observed in different periods. Uncertainty
about the estimates is depicted trough confidence bands obtained by using the
non-parametric Bootstrap. The effectiveness of the proposal is shown by applying
the method to a real financial data set about some portfolios of Italian unsecured
NPLs taken in charge by a specialized operator.

Keywords: Recovery rate · Time to liquidate · NPLs · Censored data

1 Introduction

Non-Performing Loans (NPLs) are exposures in state of insolvency, that means loans
whose collection by banks is uncertain. As Resti and Sironi [9] point out, an effective
recovery depends on the characteristics of the exposure, of the counterparty, on macroe-
conomic and on internal (to the bank) factors. There is a NPL market that offers banks the
opportunity to get rid of non-performing loans by selling them to specialized operators
who deal with recovery. The main method for determining the value of Non-Performing
Loans is that of discounted financial flows, according to which the value of the loans is
equal to the sum of the expected income flows, discounted at a rate consistent with the
expected unlevered return of the investor and net of the related recovery costs.

In the case of a performing loan, the borrower is expected to pay principal and
interest at the agreed deadlines with a high level of probability (one minus the probability
of default, generally low). In this case, the uncertainty in the valuation is limited to
the determination of the discount rate to consider the general market conditions and
the specific risk of the debtor. In the case of Non-Performing Loans, the uncertainty
concerns not only the discount rate but also the amount that will be returned and the
time of return. In fact, the probability of default is now equal to one, or is in any case

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
M. Corazza et al. (Eds.): MAF 2022, Mathematical and Statistical Methods
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2 R. Rocci et al.

very high, if the credit is in other categories of impaired loans (unlikely to pay). The
valuation methodologies currently used on the market are therefore based primarily on
forecast models of the amount of net repayments expected from receivables and related
collection times.

The estimation methodology for recovery rate, which we are interested in for NPLs, is
faced in the more general context of Basel II. It is well known that under internal ratings-
based (IRB) approach to determine capital requirements for credit risk, banks are required
to estimate the following risk components: probability of default (PD), loss given default
(LGD), exposure at default (EAD) and maturity (M). While the estimation of PD is well
established, LGD is not so well investigated and still subject to research. Given the
borrower has already defaulted, LGD is defined as the proportion of money financial
institutions fail to gather during the collection period and, conversely, Recovery Rate
(RR) is defined as the proportion of money financial institutions successfully collected.
That means LGD = 1- RR.

Recovery rate (or LGD) can be estimated using both parametric and non-parametric
methods. Mainly, recovery rate is estimated using parametric methods and considering
a one-year time horizon. Methods used in literature, among others, are: classical linear
regression, regularized regression like Lasso, Ridge, Elastic-net, etc. [7], Beta regression,
inflated Beta regression, two-stage model combining a Beta mixture model with a logistic
regression [10].

In the case of NPLs, in our opinion, in investigating the recovery process of defaulted
exposures the focus must be not only on the recovered amounts, but also on the duration
of the recovery process, the so-called time to liquidate (TTL).

Cheng and Cirillo [4] propose a model that can learn, using a Bayesian update in a
machine learning context, how to predict the possible recovery curve of a counterpart.
They introduce a special type of combinatory stochastic process, based on a complex
system of assumptions, referring to a discretization of recovery rates in m levels.

Our purpose is to introduce a particular non parametric method to measure the
performance of a NPLs portfolio in terms of recovery rate (RR) and time to liquidate
(TTL) jointly, without assuming any particular model and/or discretization of the RR.
The idea is to represent the recovery process as a curve showing how the RR is distributed
during the time without assuming a particular parametric model. We will also propose a
method to estimate such a curve when some data are censored. The plan of the paper is
the following. In Sect. 2 we show how the recovery curve is defined, while in Sect. 3 the
method of estimation in case of censored data is introduced. In Sect. 4, the effectiveness
of the proposal is shown through an application on real data, while some conclusions
and final remarks are discussed in Sect. 5.

2 Recovery Rate and Time to Liquidate of a Portfolio

The definition of recovery rate (RR) and time to liquidate (TTL) of a NPLs portfolio is
not trivial because the two quantities are strictly connected. Since it is crucial to decide
when to measure the RR and TTL – that is when each NPL in the portfolio has been
entirely liquidated or after a given period to be defined - the measurement of the RR
cannot disregard the measurement of the TTL and vice versa.
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First, we note that to measure the TTL when the last NPL has been liquidated could
lead to measures highly affected, and biased, by anomalous NPLs with long TTLs and
small EAD. It follows that the TTL should be measured when the RR becomes significant.
It remains to understand what is “significant”. Second, in many cases the user needs a
more complete information rather than only two numbers: RR and TTL. It would be
better to know how the RR increases during the time. This would also help in choosing
at what RR point to measure the TTL according to whatever optimality criterion the
operator decides to adopt. For the aforementioned reasons, we decide to measure the
behavior of the RR during the time through what we called the “recovery curve”. Such
a curve is built in the following way.

Let us consider a portfolio of K NPLs. For each of the K NPLs the debt exposure at
default is EADk (exposure at default of the k-th NPL) and the total portfolio exposure
EAD= ∑K

k=1 EADk . Assume I time intervals (of the delay of payment) from the default
(time t0) to the valuation date (time tI ). Let pk,i be the recovery of the k-th NPL, in the
i-th interval (of delay), i.e. (ti−1, ti], with k ∈ {1, 2, …, K} and i ∈ {1, 2, …, I}. The
portfolio recovery in time interval i equals pi= ∑K

k=1 pk,i, that is the total recovery, for
all the K debt positions, in the i-th time interval of delay. Consequently, after i time
intervals of delay, i.e. by the end of the interval (t0, ti] we define Pi = ∑i

i′=1 pi′ as
the total portfolio “recovery value until time ti”, i.e. the total recovery, for all the K
debt positions, in the first i periods from the default date. We could also define the total
recoveryP ∗i = ∑1

i′=1 V(pi′), being V(pi) the value of pi capitalized at an appropriate
interest rate. In this initial study, we (like many other, i.e. [10]) do not consider the interest
because we consider time and recovery rate together and also because the recovery curve,
even if lower, would have the same trend. We define also Ri = Pi/EAD as the portfolio
“recovery rate until time i”, while ri = pi/EAD equals the portfolio recovery rate in the
i-th time interval. Since Ri= ∑i

i′=1 ri′ , ri = Ri − Ri−1 and r1 = R1 we can refer in an
equivalent way to Ri or to ri for i ∈ {2, …, I}.

In Table 1 there is an example of portfolio with K = 4 debt positions.

Table 1. Portfolio with K = 4 debt positions.

k EADk pk,1 pk,2 pk,3 pk,4

1 100 10 0 0 0

2 200 20 15 0 0

3 300 20 25 10 15

4 400 30 35 10 #N/D

We are interested in measuring the portfolio performance in 3 years after default,
i.e. I = 3 periods of delay. It can be measured in terms of recovery rates until year i as
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4 R. Rocci et al.

Table 2. Portfolio (EAD = 1000) performance in 3 years (I = 3).

i 1 2 3

pi 80 75 20

Pi 80 155 175

ri 8.00% 7.50% 2.00%

Ri 8.00% 15.50% 17.50%

We see that, for example, in the first 2 years the portfolio recovers the 15.5% of the
total initial exposure: 8% in the first year and 7.5% in the second.

Sometimes the available data are incomplete, in particular, censored, i.e. the pk,i are
not available from a certain date on for some k. In our example, this happens in the fourth
period for the NPL (k = 4). In this case, it is not possible to compute the recovery curve
for the fourth interval without further hypotheses. In the next section, we will discuss
some of them and how to estimate the recovery curve from the incomplete data.

3 Estimating the Recovery Rate Curve from Censored Data

The estimation of the recovery curve in the presence of censored data is carried out in a
way similar to the estimation of a survival curve (e.g. [8]). First, we note that sometimes
it is interesting to consider the “conditional recovery rate” ci in each delay period i. Let
Ei be the effective portfolio exposure at the beginning of period i

Ei =
{

EAD i= 1
∑K

k=1

(
EADk− ∑i−1

i′=1 pk,I ′
)

i> 1
(1)

that means Ei = EAD – Pi-1 with P0 = 0 by convention. The conditional recovery rate
is defined as ci = pi/Ei. In words, it is the recovery rate with respect to the effective
portfolio exposure at the beginning of the period (Ei) rather than to the initial one (EAD).
We observe that it is possible to obtain ri from ci and Ri−1:

ri= pi

EAD
· Ei

Ei
= pi

Ei
· EAD − Pi−1

EAD
= ci

(

1− Pi−1

EAD

)

= ci(1−Ri−1) (2)

It means that the recovery rate is the conditional recovery of the percentage of how
much still has to be recovered. This way of computing ri is convenient when there are
censored data in the database, i.e. for some NPLs the recovery pk,is are observed only
until a particular time. In this case, since ri = pi/EAD cannot be used, the idea is to
apply formula (2) by computing the conditional recovery rate ci using only the available
data. In details, let us suppose that Ki = {k = 1, …, K | ∃ pk,i} is the subset of indexes
k corresponding to the NPLs for which at delay time i the value pk,i is not censored. In
this case the effective portfolio exposure, for i > 1, is a generalization of (1):

Ei=
∑

k∈Ki

(

EADk−
∑i−1

i′=1
pk,i′

)

(3)
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and the conditional recovery rate is

ci=
(∑

k∈Ki
pk,i

)
/Ei (4)

Let’s consider the previous example. If we want to consider more than 3 intervals of
delay, assuming we are interested in measuring the performances in 4 years, i.e. I = 4
periods of delay, then we obtain the same results of Table 2 for the first 3 years, and for i
= 4 we get: p4 = 15, P4 = 190, E4 = 500, r4 = 2.48%, c4 = 3.00%, R4 = 19.98%. This
method of measuring performances allows not only to measure jointly the recovery rate
and the time to liquidate, but also to deal with censored data.

Obviously, it is wrong to imagine the censored data equal to 0, meaning no inflows
instead than no information about that inflow. With the same example, substituting p4,4

= 0, we would obtain the same results of Table 2 for the first 3 years, but for i = 4 we
would get: p4 = 15, P4 = 190, E4 = 825, r4 = 1.50%, c4 = 1.82%, R4 = 19.00%. That
is, probably, an underestimate of the true curve.

The results would have been different if we simply did not consider in the portfolio
the NPLs for which the data are censored. In the example, considering I = 4 periods of
delay excluding NPL4 would lead to different results for all the durations, as it is shown
in the table below. Such estimates are of lower quality than the proposed ones because
obtained by using less data, i.e. information (Table 3).

Table 3. Portfolio (EAD = 600) performance for K = 3 loans.

i 1 2 3 4

pi 50 40 10 15

ri 8.33% 6.67% 1.67% 2.50%

Ri 8.33% 15.00% 16.67% 19.17%

4 Application

We analyse a data set of Italian NPLs supplied by a specialized operator. We examine
two portfolios of unsecured loans with different initial debt size. The portfolios have the
same year of acceptance by the operator: year 2005. In particular:

Portfolio 1: 5000 <EADk < 25000, K = 4732, Average EADk = 14709;
Portfolio 2: 100000 <EADk < 250000, K = 876, Average EADk = 151117.

We consider as time t0 the year of acceptance (2005), rather than the exact time
of default, because this is the moment in which the operator starts the recovery proce-
dure. We follow the recovery history for 9 years. We observe that both portfolios have
approximately 5% censored data in the last year and about 2.5‰ censored data in the
penultimate year. The results in terms of ri and Ri are reported in the plots below,

A
ut

ho
r 

Pr
oo

f



6 R. Rocci et al.

Fig. 1. Recovery rate until time i (Ri) recovery rate (ri) of Portfolio 1 and Portfolio 2.

where the dotted lines are the boundaries of the confidence intervals computed pointwise
by using a non-parametric bootstrap [6].

Obviously, the highest values of the recovery rate are at the beginning of the period
(i = 1) and as time passes the recovery rate tends to decrease, even if not monotonically.
To compare the results we discuss Ri, that in our opinion is the most explicative ratio.
Even considering the width of the confidence intervals, it appears that the recovery is
greater for the portfolio with smaller credits. Probably, this is because taking charge by
specialized operators has greater effect on those who must return lower amounts.

In the extended version of the paper other comparisons will be presented.

5 Conclusions and Final Remarks

According to the objective of this paper, we propose a kind of measurement that takes
in consideration both the recovery rate, the time to liquidate and how they interact. This
is obtained by estimating a “recovery curve” displaying the behaviour of the recovery
rate during the time.

In doing that, we faced the problem of censored data and we suggest to use a method
of measuring performances that allows not only to measure jointly the recovery rate and
the time to liquidate, but also to deal with censored data. This method is based on an
algorithm that is usually used in the construction of survival curves.

Our next goal is to use our method to compare performance of portfolios with dif-
ferent characteristics by using non-parametric boostrap tests for clustered observations.
taking into account. Another idea is to extend and test the validity of the method to cases
where the database has missing data not only at the end of the observation period, but
also at the beginning of it.
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