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Abstract

In this paper, we develop a unified regression approach to model unconditional quantiles,
M-quantiles and expectiles of multivariate dependent variables exploiting the multidimen-
sional Huber’s function. To assess the impact of changes in the covariates across the entire
unconditional distribution of the responses, we extend the work of Firpo et al. (2009) by run-
ning a mean regression of the recentered influence function on the explanatory variables. We
discuss the estimation procedure and establish the asymptotic properties of the derived esti-
mators. A data-driven procedure is also presented to select the tuning constant of the Huber’s
function. The validity of the proposed methodology is explored with simulation studies and
through an application using the Survey of Household Income and Wealth 2016 conducted by
the Bank of Italy.
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1 Introduction

When researchers wish to determine the effect of relevant predictors across the entire distribution of

the dependent variable of interest, Quantile Regression (QR), as introduced by Koenker and Bassett Jr

(1978), plays a crucial role in providing a much more complete statistical analysis compared to the

classical mean regression. Indeed, it allows to model conditional quantiles of a response as a func-

tion of explanatory variables and it has been greatly exploited for the study of non-Gaussian,

heavy-tailed and highly skewed data. For a detailed survey and list of references of the most used

QR techniques, please refer to Koenker (2005) and Koenker et al. (2017).

However, if one is interested in how the whole unconditional distribution of the outcome re-

sponds to changes in the covariates, QR methods would yield misleading inferences (see Firpo et al.

2009; Borah and Basu 2013; Maclean et al. 2014). As explained by Frölich and Melly (2013) in a

simple example relating wages to years of education, the unconditional 90-th quantile refers to the

high wage workers, whereas the 90-th quantile conditional on education refers to the high wage

workers within each education class, who however may not necessarily be high earners overall.

Presuming a strong positive correlation between education and wages, it may well be that the

90-th quantile among high school dropouts is lower than, say, the median of all Ph.D. graduates.

The interpretation of the 90-th quantile is thus different for conditional and unconditional quan-

tiles. From a policy perspective, while the welfare of highly educated people with relatively low

wages catches little interest, the welfare of the poor, i.e., those located in the lower end of the

unconditional distribution of wages, attracts a lot of attention in the political debate.

In medicine, the analysis of epidural analgesia on the duration of the second stage of la-

bor (see Zhang et al. 2012) gives another example where researchers are interested in changes

in the quantiles, qτ , of the unconditional distribution of the response Y , FY (y). Obstetricians

are particularly concerned about the unconditional effect dqτ (p)/dp of increasing the proportion

2



of patients receiving epidural analgesia, p = Pr[X = 1], on the τ -th quantile of the uncondi-

tional distribution of the duration of second-stage labor, where X = 1 if the patient receives

the treatment (epidural) and X = 0 otherwise. Unfortunately, the coefficient βτ from a condi-

tional quantile regression, βτ = F−1
Y (τ | X = 1) − F−1

Y (τ | X = 0), is generally different from

dqτ (p)/dp = (Pr[Y > qτ | X = 1]−Pr[Y > qτ | X = 0])/fY (qτ ), the effect of increasing the propor-

tion of patients receiving epidural analgesia on the τ -th quantile of the unconditional distribution

of Y .

There are, indeed, numerous applications of practical relevance where the ultimate research

objective is the unconditional distribution of the dependent variable, as in the context of the

earnings disparities between different groups of workers, the effect of education on earnings, or

the distributional impacts of a particular treatment in a given population (Borah and Basu 2013;

Frölich and Melly 2013; Huffman et al. 2017; Firpo et al. 2018). Therefore, a number of proposals

has been introduced in the literature to estimate these unconditional effects (Machado and Mata

2005; Melly 2005).

Motivated by this interest, Firpo et al. (2009) proposed the Unconditional Quantile Regression

(UQR) approach for estimating the impact of changes in the distribution of the explanatory vari-

ables on quantiles of the unconditional distribution of a dependent variable. This method builds

upon the concept of Recentered Influence Function (RIF) which originates from a widely used tool

in robust statistics, namely the Influence Function (IF, see Hampel 1974; Huber and Ronchetti

2009). In particular, the UQR of Firpo et al. (2009) consists of regressing the RIF of the uncon-

ditional quantile of the outcome variable on the explanatory variables using either Ordinary Least

Squares (OLS), logistic regression or the nonparametric regression of Newey (1994).

Their approach represents an important contribution on quantile regression methods and its

validity is also demonstrated by the growing scientific literature spanning from medicine, economics,

social inequalities and agriculture.
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These studies, however, focus on a univariate regression framework. In the analysis of multivariate

data, univariate approaches are not appropriate for this purpose, as they provide only partial

pictures of the phenomenon under investigation. In these cases, the research interest may focus not

only on a regression model for each outcome, but also on accounting for the dependence structure

between the responses. When the problem under investigation involves multivariate dependent

variables, the method of Firpo et al. (2009) cannot be easily extended to higher dimensions due

to the non existence of a natural ordering in a p-dimensional space, p > 1 (see Serfling 2002;

Kong and Mizera 2012; Koenker et al. 2017; Petrella and Raponi 2019; Merlo et al. 2022).

With this paper, we contribute to the current literature extending the univariate UQR approach

of Firpo et al. (2009) to a more general multivariate setting. Particularly, we propose to employ the

multidimensional Huber’s function defined in Hampel et al. (2011) to build a unified unconditional

regression approach that encompasses multivariate quantiles, M-quantiles (Breckling and Chambers

1988) and expectiles (Newey and Powell 1987).

In the statistical literature, the Huber’s function has been used to define the M-quantile for ro-

bust modeling of the entire distribution of univariate response variables, extending the ideas of

M-estimation of Huber (1964) and Huber and Ronchetti (2009). This method provides a “quantile-

like” generalization of the mean based on influence functions that combines in a common frame-

work the robustness and efficiency properties of quantiles and expectiles, depending on the choice

of the Huber’s tuning constant; the latter offering higher estimation efficiency and computational

advantages compared with the former when there are no outliers in the data. In the multivari-

ate framework, the multidimensional Huber’s function (Hampel et al. 2011) has been exploited

by Breckling and Chambers (1988) to define the multivariate M-quantile using a direction vec-

tor in the Euclidean p-dimensional space in order to establish a suitable ordering procedure for

multivariate observations. Subsequently, Kokic et al. (2002) generalized their definition by in-

troducing a class of multivariate M-quantiles based on weighted estimating equations, which in-
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cludes multivariate quantiles and expectiles depending on the value of the tuning constant. This

proposal provides a robust technique for summarizing the distribution of multidimensional data

and overcomes the shortcomings of the definitions of multivariate geometric or spatial quantiles

(Chaudhuri 1996) and expectiles (Herrmann et al. 2018) when extremes observations are of interest;

see Girard and Stupfler (2017).

In our paper, we rely on the Kokic et al. (2002) approach using the multidimensional Huber’s

function to model unconditional quantiles, M-quantiles and expectiles of multivariate response

variables in a unified regression framework, by choosing the tuning constant appropriately.

In order to analyze the impact of changes in the distribution of explanatory variables on the entire

unconditional distribution of the responses, following Firpo et al. (2009), we regress the RIF of the

proposed model on the covariates, producing the Unconditional Quantile, M-Quantile and Expectile

Partial Effect (UQPE, UMQPE, UEPE) according to the selected value of the tuning constant.

From the theoretical point of view, we establish the asymptotic properties of the corresponding

estimators using the Bahadur representation (Bahadur 1966). Furthermore, we propose a data-

driven method based on cross-validation for selecting the tuning constant that accounts for possible

outliers in the data.

Using simulation studies, we illustrate the finite sample properties of the proposed methodol-

ogy under different data generating processes. From an empirical standpoint, we demonstrate the

usefulness of this method through the analysis of the Survey on Household Income and Wealth

(SHIW) 2016 conducted by the Bank of Italy. In particular, we fit the proposed model to evaluate

the effect of economic and socio-demographic characteristics of Italian households on the uncondi-

tional distributions of family wealth and consumption, accounting both for the correlation between

the outcomes and influential observations in the sample. The proposed multivariate approach al-

lows us to consider consumption and wealth as part of a collective framework and it can be of great

interest to investigate the unconditional effect of covariates on families’ spending and wealth, with
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particular emphasis on those with jointly low or high consumption and wealth levels.

The remainder of the paper is organized as follows. In Section 2, we revise the RIF and

its properties. Section 3 introduces the proposed unconditional regression model for multivariate

response variables and provides a detailed discussion of the asymptotic properties of the introduced

estimators. Finally, the empirical application is presented in Section 4, while Section 5 concludes.

The simulation study and all the proofs are provided in the Supplementary Materials.

2 Notation and preliminary results

In this section, we present the main notation and concepts which we use throughout the paper.

Specifically, we review the notion of Recentered Influence Function (RIF) which originates from

the Influence Function (IF) of Hampel (1974). Then, we present the Unconditional Partial Effect

(UPE) introduced by Firpo et al. (2009) that leads us to analyze the impact of changes in the

distribution of covariates on the unconditional distribution of the response variable.

Let Y denote a vector-valued random variable belonging to an arbitrary sample space Y , which

can be either a subset or equal to R
p, with absolutely continuous distribution function FY and

consider a vector-valued functional ν(FY) where ν : Fν → R
p, such that Fν is the collection of all

distributions on Y for which ν is defined. The functional ν can belong to a wide class of distribu-

tional statistics. For example, ν can be a location parameter characterizing the distribution of Y,

a measure of scatter, as well as many inequality measurements such as concentration functions.

The IF allows to study the effect of an infinitesimal contamination in the underlying distribution

FY at a point y on the statistic ν(FY) we are interested in. Let us consider ∆y the probability

measure that puts mass 1 at the value y and let FY,t∆y
= (1 − t)FY + t∆y represent the mixing

distribution with t ∈ [0, 1]. Following Hampel et al. (2011), the p-dimensional IF of ν(FY) is
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defined as:

IF (y; ν) = lim
t→0

ν(FY,t∆y
)− ν(FY)

t
. (1)

Using the definition of IF in (1), Firpo et al. (2009) considered the RIF to analyze the statistic

ν(FY) after a perturbation of FY in the direction of ∆y. In particular, the RIF is defined as the

first two terms of the von Mises linear approximation (Mises 1947) of the corresponding statistic

ν(FY,t∆y
) with t = 1, namely:

RIF (y; ν) = ν(FY) +

∫
IF (s; ν)d∆y(s) = ν(FY) + IF (y; ν). (2)

The RIF in (2) can be interpreted as a linear approximation to a possibly complex and nonlinear

statistic ν(FY) measuring how it is affected by an infinitesimal perturbation in FY.

In the presence of a set of covariates X ∈ X , with X ⊂ R
k being the support of X, Firpo et al.

(2009) suggested the use of the RIF in (2) for analyzing the impact on ν(FY) due to changes in the

distribution of X, FX. In particular, in order to incorporate the effect of the explanatory variables,

by the law of iterated expectations it follows from (2) that:

ν(FY) =

∫
RIF (y; ν)dFY(y) =

∫
E[RIF (Y; ν) | X = x]dFX(x), (3)

where in the first equality we used the fact that
∫
IF (y; ν)dFY(y) = 0 (see Hampel et al. (2011),

p. 226) and in the second one we substituted in FY(y) =
∫
FY|X(y | x)dFX(x).

From (3) it can be seen that when one is interested in the impact of a change in the covariates X on

a specific distributional statistic ν(FY), the E[RIF (Y; ν) | X = x] can be modeled as a function

of X, which can be easily implemented using regression methods for the conditional mean (see

Firpo et al. 2009, 2018 and Rios-Avila 2020). More formally, in this work we are mainly interested

in a small location shift t in the distribution of covariates X from FX to the distribution GX of

the k-dimensional vector X̃, where X̃l = Xl for l 6= j, l = 1, . . . , k, and X̃j = Xj + t. In this

case, let αj(ν) denote the partial effect of a small change in the distribution of covariates from FX
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to GX on the functional v(FY) and let α(ν) = (α1(ν), . . . ,αk(ν)) be the matrix collecting all j

entries. Under the assumption that the conditional distribution of Y given X, FY|X, is unaffected

by changes in the law of X, the matrix of partial effects of small location shifts in the distribution

of X is given by (see Corollary 1 in Firpo et al. 2009):

α(ν) =

∫
dE[RIF (Y; ν) | X = x]

dx
dFX(x), (4)

where dE[RIF (Y; ν) | X = x]/dx is understood to indicate the Jacobian matrix of all its first

order partial derivatives with respect to [xj ]
k
j=1. Firpo et al. (2009) call the quantity α(ν) in

(4) as the Unconditional Partial Effect (UPE). By analogy with standard conditional regression

coefficients, α(ν) corresponds to the effect of a small increase in the location of the distribution of

the explanatory variables on the functional ν(FY), holding everything else constant. It is worth

noting that our approach requires FY|X to be “structural” in the sense of “invariant to a class of

modifications” (Heckman and Vytlacil 2007, p. 4848 and Section 4.8) and rules out the presence

of potential sources of endogeneity like selection bias in inference.

In the case of a dummy variable X ∈ {0, 1}, the UPE represents the effect of a small increase in

the probability that X = 1, namely:

α(ν) = E[RIF (Y; ν) | X = 1]− E[RIF (Y; ν) | X = 0]. (5)

In addition, as discussed by Firpo et al. (2009) and Firpo et al. (2018), the approach based on

the RIF can also be used to assess the effect of more general changes in the distribution of covariates

on the functional ν(FY). For example, if the goal of the analysis is to assess how such modifications

affect the dependence of Y, ν can be a measure of multivariate scatter or a well-known correlation

coefficient, provided that the corresponding influence function can be derived.

In the following section we exploit these properties for the analysis of unconditional quantile,

M-quantile and expectile regressions associated to multivariate response variables.
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3 Methodology

In this section, we generalize the univariate approach of Firpo et al. (2009) by developing a unifying

regression method to model unconditional quantiles, M-quantiles and expectiles of vector-valued

responses for exploring the effects of covariates using the RIF approach illustrated in Section

2. Firstly, we introduce the Huber’s multidimensional M-function for estimating multivariate

quantiles, M-quantiles and expectiles by varying the value of the tuning constant in an appropriate

way. Then, in order to assess the effect of the covariates at different parts of the unconditional

distribution of the dependent variable, we introduce the Unconditional Quantile, M-Quantile and

Expectile Partial Effect (UQPE, UMQPE, UEPE) and establish the asymptotic properties of the

corresponding estimators.

The Huber’s function, in the univariate case, has been used by Breckling and Chambers (1988)

to define the M-quantile, extending the concept of M-estimation of Huber (1964) to the quantile

framework. Huber M-quantiles are a generalized form of M-estimators that include in a single mod-

eling approach, quantiles and expectiles through a tuning constant to adjust the robustness of the

estimator in the presence of outliers. In higher dimensions, extending these univariate notions to

multivariate data is not a trivial task since there does not exist a natural ordering in p dimensions,

p > 1. Already in their proposal, Breckling and Chambers (1988) considered the multivariate ex-

tension of Huber’s function to estimate M-quantiles by considering a directional unit norm vector

to set up a suitable ordering procedure for multidimensional data. Further, Kokic et al. (2002)

generalized their approach by introducing a weighted estimating equation based on the multidi-

mensional Huber’s influence function that encompasses multivariate quantiles, M-quantiles and

expectiles, depending on the value of the related tuning constant. Their method aimed to provide

a robust and simple to implement technique of summarising and conveying valuable information

about multidimensional data. Here and in what follows, in order to present a unified uncondi-
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tional regression approach to model multivariate quantiles, M-quantiles and expectiles, we adopt

the approach of Kokic et al. (2002) based on the multidimensional Huber’s function.

Formally, the multidimensional Huber’s influence function in Hampel et al. (2011) is defined

as:

Ψ(r) =





r

c
, ‖r‖ < c

r
‖r‖ , ‖r‖ ≥ c

, r ∈ R
p, r 6= 0 (6)

with additionally Ψ(0) = 0 and where c ≥ 0 is the tuning constant that can be adjusted to trade

robustness for efficiency, with increasing robustness when it is chosen to be close to 0 and increasing

efficiency when it is chosen to be large. To show how one can use the Ψ(r) function in (6) to estimate

multivariate quantiles, M-quantiles and expectiles, we introduce the following additional notation.

Let Y = R
p, consider a continuous p-dimensional random variable Y and let u denote a unit norm

direction vector ranging over the p-dimensional unit sphere Sp−1 = {z ∈ R
p : ||z|| = 1}, where

|| · || denotes the Euclidean norm. Following Kokic et al. (2002), for a general value of c, we obtain

the τ -th multivariate M-quantile of Y in the direction of u, θτ,u, with τ ∈ (0, 1
2
], by satisfying the

equation:
∫

ηδ(ϕ)Ψ(y − θτ,u)dFY(y) = 0, (7)

where

ηδ(ϕ) =





(1− cosϕ)δζ + 2τ, ϕ ∈ (−π
2
, π
2
)

−(1− cosϕ)δζ + 2(1− τ), ϕ ∈ [−π,−π
2
] ∪ [π

2
, π],

is a weighting function with ζ = 1 − 2τ , δ > 0 and ϕ being the angle between Y − θ and u, so

cosϕ = (Y−θ)′u
‖Y−θ‖ . Evidently, one can also consider non-normalized directions by explicitly writing

cosϕ = (Y−θ)′u
‖Y−θ‖‖u‖ .

The function ηδ(ϕ) gives asymmetric weights to the residual Y − θ depending both on its

length and the angle it forms with u. Most importantly, the tuning constant c determines where

the weighted scheme based on ηδ(ϕ) defines multivariate quantiles when c = 0 and yields multi-

variate expectiles as c → ∞, which could be particularly fruitful when the use of outlier-robust
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estimation methods is not justified but there is still interest in modeling the entire distribution of

Y (Tzavidis et al. 2010). Hence, multivariate expectiles inherit the efficiency properties of stan-

dard univariate expectiles and, at the same time, consider the dependence structure between the

components of the variable analyzed. Computationally, an estimate of θτ,u in (7) can be efficiently

obtained by using Iteratively Reweighted Least Squares (IRLS, Breckling et al. 2001). Clearly, the

multivariate M-quantile in (7) includes the traditional notion of univariate M-quantile. Indeed, if

p = 1, u = 1 and δ = 1, then (7) reduces to the estimating equation of the univariate M-quantile,

θτ , because cosϕ = sgn(Y − θτ ), which implies that ηδ(ϕ) = 1 − ζsgn(Y − θτ ). Throughout the

rest of the paper we set δ = 1, but other values of δ are possible (see Kokic et al. 2002 and the

Supplementary Materials for this article).

In comparison with other settings in the literature, the considered approach remedies the short-

coming of the Chaudhuri (1996) and Herrmann et al. (2018) definitions of geometric quantile and

expectile which have recently been criticized because they can be situated outside the support of

Y for extreme levels of τ (see Girard and Stupfler 2017; Konen and Paindaveine 2021). Moreover,

Breckling and Chambers (1988) M-quantiles, which can be shown to coincide with the definition

in Chaudhuri (1996) as a particular case, are also subject to the same problem. The definition

in (7), on the contrary, lead to multivariate M-quantiles always situated within the convex hull

of the sample data (for a comparative analysis between the considered definition of multivariate

(M-)quantile and the geometric quantile, see the Supplementary Materials).

A particular issue in this context may be the choice of the direction u, which is often selected on

the basis of the empirical problem at hand to produce meaningful results (see Paindaveine and Šiman

2011; Kong and Mizera 2012 and Merlo et al. 2022). For example, Fraiman and Pateiro-López

(2012) and Torres et al. (2017) consider a set of directions using the principal components ob-

tained from a PCA to build a useful tool for exploratory data analysis and visualize important

features of multidimensional data. In classification analysis, Farcomeni et al. (2022) focus on a
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single optimal direction that minimizes the misclassification error meanwhile, Geraci et al. (2020)

define the “allometric direction” for risk classification of abnormal multivariate anthropometric

measurements.

When the directional approach is adopted, considering theoretically all directions in Sp−1 si-

multaneously yields multivariate M-quantiles centrality regions, which allow us to provide a visual

description of the location, spread, shape and dependence between the responses distribution.

These quantities are of crucial interest as they are able to adapt to the underlying shape of the

distribution of Y without being constrained to particular shapes, such as convex bodies or ellipses

(Breckling et al. 2001). Specifically, for a given level τ ∈ (0, 1
2
], by moving the direction u around

the whole Sp−1, the resulting set of corresponding multivariate M-quantiles generates the τ -th

M-quantile region embedded within the p-dimensional Euclidean space, Rτ ⊂ R
p, defined as the

collection whose vertices are:

Rτ = {θτ,u

∣∣u ∈ Sp−1}. (8)

The region in (8) is a closed surface and the corresponding M-quantile contour of order τ is defined

as the boundary ∂Rτ of Rτ . The position, curvature, spread and orientation of such objects all

reflect important characteristics of the data that are relevant to researchers for exploratory data

analysis. M-quantile curves can thus be used for exploratory data analysis as well as a statistical

diagnostic tool to evaluate the results to different values of the tuning constant. For fixed τ , when

c = 0 it defines quantile contours and it generates expectile contours when c → ∞. Meanwhile, for

any c ≥ 0, the contours are nested as τ increases. As τ → 0, instead, the τ -th M-quantile contour

approaches the convex hull of the sample data providing valuable information about the extent of

extremality of points (see Serfling 2002 and Kokic et al. 2002).

To build our model, it follows from (7) and Hampel et al. (2011) that the IF for the uncondi-
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tional multivariate M-quantile θτ,u is defined as:

IF (y; θτ,u) = M(θτ,u)
−1ηδ(ϕ)Ψ(y − θτ,u) (9)

with M(θτ,u) being the p× p matrix given by:

M(θτ,u) = −
∫

∇θτ,u

(
ηδ(ϕ)Ψ(y − θ)

)
dFY(y), (10)

where ∇θτ,u

(
·
)
is the p×p matrix of first order derivatives of ηδ(ϕ)Ψ(y−θ) in (7) with respect to

θ evaluated at θτ,u. Then, following the idea in (2), the RIF is obtained from (9) by adding back

the multivariate M-quantile θτ,u:

RIF (y; θτ,u) = θτ,u + IF (y; θτ,u). (11)

Two remarks are worth noticing. Firstly, (11) generalizes the RIF of the multivariate quantile

when c = 0, where the matrix of first order derivatives of Ψ(r) is equal to:

dΨ(r)

dr
=

1

‖r‖
{
Ip −

rr′

‖r‖2
}
, (12)

with Ip being the identity matrix of dimension p, and it coincides with the RIF of the multivariate

expectile when c → ∞, which implies dΨ(r)
dr

∝ Ip. Secondly, when p = 1 and u = 1, (11) reduces

to the univariate RIF of standard M-quantiles which, in turn, includes the RIF of the quantile in

Firpo et al. (2009) and the RIF of the expectile for c arbitrarily large. Further, using this approach

we are able to investigate the correlation structure of multivariate responses at different values of

τ . More in detail, to study the association between multiple outcomes we analyze the covariance

matrix of the RIF in (11) which, by simple calculations, can be written as:

∆(θτ,u) = E[IF (Y; θτ,u)IF (Y; θτ,u)
′]. (13)

Given u, τ and c, the off-diagonal elements of ∆(θτ,u) provide a measure of tail correlation between

the components of Y.
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In a regression framework where covariates X are available, from (11) we define the unified

unconditional regression model as follows:

E[RIF (Y; θτ,u) | X = x] = mθτ,u
(x), (14)

where m(·) is an unknown function of explanatory variables X to be estimated. Our objective is

to identify how changes in the distribution of X affect the multivariate quantile, M-quantile and

expectile of the unconditional distribution of Y. Following (4), for a given level τ , direction u, and

constant c ≥ 0, the Unconditional M-Quantile Partial Effect (UMQPE), ατ,u, is formally defined

as:

ατ,u =

∫
dE[RIF (Y; θτ,u) | X = x]

dx
dFX(x). (15)

It is worth noting that the proposed approach has several appealing properties. Firstly, the UMQPE

in (15) is easy to compute as it does not depend on the density of Y which would entail the use

of nonparametric density estimation procedures (Kokic et al. 2002). Secondly, this methodology

allows us to directly control the robustness to outliers and estimation efficiency by means of the

tuning constant c, i.e., when c = 0 we have the UQPE and when c → ∞ we have the UEPE. In

practice, the UMQPE indicates the effect of increasing the years of schooling or income, say, across

the consumption and wealth distributions, as we will discuss in the next section.

Before concluding this section, it is relevant to compare the proposed unconditional regression

model with the standard conditional regression approach. Suppose that Y = h(X) + ǫ, where

h : X → R
p is an unknown function with bounded first partial derivatives and ǫ is a p-dimensional

random error independent of X. For a given τ , u and c ≥ 0, we denote the τ -th multivariate

M-quantile of Y conditional on X = x, θτ,u(x) = h(x), as the solution of the following estimating

equation:
∫

ηδ(ϕ)Ψ(y − θτ,u(x))dFY|X(y | x) = 0. (16)

Consequently, the effect of a small change in X on the conditional M-quantile of Y, θτ,u(x), which
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we denote as Conditional M-Quantile Partial Effect (CMQPE), is given by:

ατ,u(x) =
dh(x)

dx
. (17)

In order to clarify the interpretation of (15), following Firpo et al. (2009), we provide a useful

representation of the UMQPE in terms of the conditional distribution of Y given X and show how

it is related to the CMQPE in (17). Let Wτ,u : X → R
p×p define the weighting matrix function:

Wτ,u(x) = M(θτ,u)
−1
E[∇

(
ηδ(ϕ)Ψ(Y − θτ,u)

)
| X = x] (18)

and let sτ,u be an auxiliary function sτ,u : X → (0, 1) required to establish the link between the

UMQPE and the CMQPE. The mapping sτ,u can be thought as a “matching” function indicating

where the unconditional multivariate M-quantile θτ,u falls in the conditional distribution ofY given

covariates, i.e.:

sτ,u(x) = {τ̃ : θτ̃ ,u(x) = θτ,u}. (19)

In this work, we require that, under the condition that FY|X(y | x) is continuous and strictly

monotonic (Breckling and Chambers 1988), sτ,u(x) is a singleton, that is, there is only one τ̃ that

satisfies the equality in (19). Generally, three situations may occur: sτ,u(x) is unique, it is interval-

valued or it is empty for some x (Alejo et al. 2021). From a practical point of view, for fixed x,

if sτ,u(x) is interval-valued, then a possible solution would be to take the average of all τ̃ ’s inside

that particular interval. If, on the other hand, sτ,u(x) is empty, one could impute τ̃ by taking the

average of the nearest neighbors to the covariate value x. Refer to the Supplementary Materials

for a discussion and an estimator of the matching function.

The next Theorem establishes a link between the UMQPE and the CMQPE.

Theorem 1. Assume that Y = h(X) + ǫ where h(·) is an unknown function with bounded first

partial derivatives and ǫ is an error term independent of X. For a given τ ∈ (0, 1
2
], u ∈ Sp−1 and

c ≥ 0, the UMQPE ατ,u can be written as:

ατ,u = E[Wτ,u(X)αsτ,u(X),u(X)], (20)
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where the expectation is taken over the distribution of X.

Proof. See Proof of Theorem 1 in the Supplementary Materials.

From Theorem 1 there follow several interesting considerations. Firstly, it formally shows

that, unlike conditional means which average up to the unconditional mean thanks to the law of

iterated expectations, conditional multivariate M-quantiles do not average up to their unconditional

counterparts. On the contrary, the UMQPE is equal to a weighted average, over the distribution

of the covariates, of the CMQPE at the sτ,u(X)-th conditional M-quantile level corresponding to

the τ -th unconditional M-quantile of Y in the direction u. Secondly, it generalizes the result in

Firpo et al. (2009) to the multivariate setting which also holds in the univariate case when p = 1

and u = 1. Furthermore, Theorem 1 is useful for interpreting the parameters of the proposed

regression method. For instance, in a linear model where h(X) = β′X, the UMQPE and CMQPE

are both equal to the matrix of regression coefficients β for any choice of τ and u. More generally,

the UMQPE and CMQPE will be different depending on the structural form of h(·) and the

distribution of X as described in Theorem 1. Lastly, in the presence of heteroskedastic errors,

one can consider the linear heteroskedastic model Y = β′X + diag(γ ′X)ǫ which is often used in

economics, with γ being a matrix of coefficients. In this case, to exploit Theorem 1 a practical

solution would be to adopt a flexible form of h(·) and estimate the conditional expectation of

the RIF using nonparametric regression approaches. Alternatively, a possible way to alleviate

heteroskedasticity is to apply a transformation to the original response variable.

3.1 Estimation

In this section, we discuss the estimation of the UQPE, UMQPE and UEPE using the RIF regres-

sion approach. Following Firpo et al. (2009), we suggest two methods for modeling the conditional

expectation of the RIF. For a given τ , direction u and c ≥ 0, the first one assumes that the RIF
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in (14) is linear in the covariates, mθτ,u
(X) = β′(θτ,u)X and estimate ατ,u in (15) via an OLS

regression of the RIF (Y; θτ,u) as a dependent variable onto the covariates X by using a two-step

procedure. Specifically, an estimate θ̂τ,u of θτ,u is obtained by solving (7) via IRLS, substitute θ̂τ,u

in (11) and then estimate ατ,u by regressing the RIF (Y; θ̂τ,u) on X. Let (Yi,Xi), i = 1, . . . , n,

denote a random sample of size n, the estimator of the UMQPE in (15), α̂τ,u, is defined as follows:

α̂τ,u = Ω̂−1
X

1

n

n∑

i=1

{XiRIF ′(Yi; θ̂τ,u)}. (21)

where Ω̂X = 1
n

∑n

i=1XiX
′
i.

The second method estimates non-parametrically E[RIF (Y; θτ,u) | X] using regression B-

splines to account for nonlinear effects ofX on the RIF. Once we have regressed RIF (Y; θ̂τ,u) on the

basis functions of the original covariates, as the object of interest is the average of dE[RIF (Y;θτ,u)|X=x]
dx

,

to obtain the UMQPE we simply take derivative of B-spline basis functions and average them with

respect to X. Note also that other nonparametric approaches can be adopted such as power series

estimators (Newey 1994) or orthogonal polynomials.

Finally, the estimators of the UQPE and UEPE related to (15) can be obtained following the

same procedure by setting c = 0 and c large enough such that ||Yi − θτ,u|| < c, ∀i = 1, . . . , n,

respectively. If the researcher is interested in modeling multivariate quantiles or expectiles, one

can simply set c = 0 or c to a relatively large value. In all other cases, the UMQPE estimator in

(21) requires choosing a reasonable value for the tuning constant, based on the data structure and

the aim of the analysis.

The choice of an appropriate value for c is not straightforward. Ideally, it should be data-driven

and account for possible outliers in the data. In the literature on univariate M-estimation, c can

be either fixed a-priori or defined by the data analyst to achieve a specified asymptotic efficiency

under normality (Huber and Ronchetti 2009), maximize the asymptotic efficiency (Wang et al.

2007) or it can be estimated in a likelihood framework as illustrated by Bianchi et al. (2018).
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In our multivariate context, we propose to select the tuning constant via K-fold cross-validation

which allows us to consider c as a data-driven parameter. In particular, for fixed τ and u, we

construct a uniform grid of values from cmin = 0.1 to cmax = max
i=1,...,n

|| Yi ||. Then, for each value

of c ∈ [cmin, . . . , cmax], we fit the proposed model and determine the optimal value, denoted with

c⋆, in the sense that it minimizes the estimated prediction error across the K folds, that is:

ĈVK(c) =
1

n

K∑

k=1

∑

i∈Ik

(Yi − θ̂
(k)

τ,u(c))
′(Yi − θ̂

(k)

τ,u(c)), (22)

where I1, . . . , IK is a random partition of the n observations into K folds and θ̂
(k)

τ,u(c) is the estimate

of θτ,u obtained using the entire sample except data points in the k-th fold for a given value of c.

Finally, c⋆ is estimated by:

c⋆ = arg min
c∈ [cmin,...,cmax]

ĈVK(c). (23)

3.2 Asymptotic properties

This section presents the asymptotic properties of the estimator α̂τ,u in (21) where the E[RIF (Y; ν) |

X = x] is modeled as a linear function of X. Specifically, we derive the Bahadur-type (Bahadur,

1966) representation, consistency and asymptotic normality for fixed τ , direction u and c. To

prove the following results, we follow Firpo et al. (2009) where they consider the IF and not its

recentered version. Either using the IF or the RIF, all regression coefficients are the same, the only

exception being the intercept.

Consider the following assumptions:

(A1) The distribution of the random vectorY is absolutely continuous with respect to the Lebesgue

measure on R
p, with a density bounded on every compact subset of Rp.

(A2) The observations (Yi,Xi), i = 1, . . . , n are an i.i.d. sample from (Y,X).

(A3) E[|| ηδ(ϕ)Ψ(Y − θ) ||] < ∞, ∀θ ∈ R
p.
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(A4) E[|| ηδ(ϕ)Ψ(Y − θ̃) ||2] < ∞ for each θ̃ in a neighborhood of θτ,u.

(A5) The p× p matrix M(θτ,u) in (10) is positive definite.

(A6) Ω̂X is nonsingular almost surely for n sufficiently large and converges to ΩX = E[XX′].

It is worth noticing that assumptions A1-A6 are quite mild and are standard in robust estimation

theory. For instance, assumptions A1-A5 are needed for the Bahadur (Bahadur 1966) representa-

tion and ensure the invertibility of M(θτ,u).

In order to present the asymptotic properties α̂τ,u, we first need to establish the Bahadur-type

representation for θ̂τ,u and its limiting distribution.

Theorem 2. Let assumptions A1-A5 hold. Then, for any τ ∈ (0, 1
2
] and u ∈ Sp−1, the following

asymptotic linear representation holds:

√
n(θ̂τ,u − θτ,u) = M(θτ,u)

−1 1√
n

n∑

i=1

ηδ(ϕi)Ψ(Yi − θτ,u) + op(1) (24)

and

√
n(θ̂τ,u − θτ,u)

p→ N (0,M(θτ,u)
−1
D(θτ,u)M(θτ,u)

−1) as n → ∞, (25)

where D(θτ,u) defines a p× p matrix:

D(θτ,u) = E[η2δ (ϕ)Ψ(Y − θτ,u)Ψ
′(Y − θτ,u)]. (26)

Proof. See Proof of Theorem 2 in the Supplementary Materials.

To prove consistency and asymptotic normality of α̂τ,u, we exploit Theorem 2 and define the

k × p matrix of OLS regression coefficients of IF (Y; θτ,u) on X:

β̂(θτ,u) = Ω̂−1
X

1

n

n∑

i=1

Xi IF
′(Yi; θτ,u) (27)

whose population counterpart is:

β(θτ,u) = Ω−1
X E[X IF ′(Y; θτ,u)]. (28)
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Also, let us denote for i = 1, . . . , n,

γ⋆
i (θτ,u) = vec

(
Ω−1

X Xiz
′
i(θτ,u)

)
and zi(θτ,u) = IF (Yi; θτ,u)− β′(θτ,u)Xi. (29)

where the vec(·) operator converts a matrix into a column vector by stacking its columns on top

of one another. Finally, we define:

α̂
⋆
τ,u = vec(α̂τ,u) and α⋆

τ,u = vec(ατ,u). (30)

Theorem 3. Let assumptions A1-A6 hold. Then, for any τ ∈ (0, 1
2
] and u ∈ Sp−1, the following

asymptotic linear representation holds:

√
n(α̂⋆

τ,u −α⋆
τ,u) =

1√
n

n∑

i=1

Si(θτ,u) + op(1) (31)

and

√
n(α̂⋆

τ,u −α⋆
τ,u)

p→ N
(
0,E

[
S(θτ,u)S

′(θτ,u)
])

as n → ∞, (32)

where Si(θτ,u) is a kp-dimensional vector:

Si(θτ,u) = ∇θτ,u
β⋆(θ)M(θτ,u)

−1ηδ(ϕi)Ψ(Yi − θτ,u) + γ⋆
i (θτ,u), (33)

and ∇θτ,u
β⋆(θ) is the derivative of β⋆(θ) with respect to θ evaluated at θτ,u.

Proof. See Proof of Theorem 3 in the Supplementary Materials.

In addition, when multiple directions are of interest, we may estimate the proposed model at

different directions simultaneously to gain better estimation accuracy by incorporating the associ-

ations among the considered directions. Hence, by proceeding as in the proof of Theorem 3 and

applying the multivariate Central Limit Theorem to the Bahadur representation in (31), we de-

rive the asymptotic distribution of the UMQPE estimator when multiple directions are considered

jointly, as shown in the following remark.
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Remark 1. Let {u1, . . . ,uJ} ⊂ Sp−1, with J being a fixed positive integer. Suppose assump-

tions A1-A6 hold, then the joint asymptotic distribution of
√
n
(
α̂

⋆
τ,u1

− α⋆
τ,u1

, . . . , α̂⋆
τ,uJ

− α⋆
τ,uJ

)

is Gaussian with zero mean and the asymptotic covariance matrix between
√
n(α̂⋆

τ,ur
−α⋆

τ,ur
) and

√
n(α̂⋆

τ,us
−α⋆

τ,us
), where 1 ≤ r, s ≤ J , will be given by E

[
S(θτ,ur

)S′(θτ,us
)
]
.

In order to use Theorem 3 to build confidence intervals and hypothesis tests, in what follows we

provide a consistent estimator of the asymptotic covariance matrix of α̂⋆
τ,u in (32). The analytical

form of the asymptotic covariance matrix suggests the following estimator:

V̂(θ̂τ,u) =
1

n

n∑

i=1

Ŝi(θ̂τ,u)Ŝ
′
i(θ̂τ,u) (34)

where Ŝi(θ̂τ,u) is the kp-dimensional vector:

Ŝi(θ̂τ,u) =
(
∇

θ̂τ,u
β̂

⋆
(θ)M(θ̂τ,u)

−1ηδ(ϕ̂i)Ψ(Yi − θ̂τ,u) + γ̂
⋆
i (θ̂τ,u)

)
(35)

and ∇
θ̂τ,u

β̂
⋆
(θ) can be obtained via numerical differentiation.

In order to establish consistency of the estimator in (34) we impose the following additional

assumption.

(A7) S(θτ,u) is continuous at θτ,u and there exists a neighborhood of θτ,u, I, such that for any θ̃

in this region, it holds that E[sup
θ̃∈I

‖S(θ̃)S′(θ̃)‖] < ∞.

Then, the next Theorem proves consistency of V̂(θ̂τ,u).

Theorem 4. Let assumptions A1-A7 hold,

V̂(θ̂τ,u)− E

[
S(θτ,u)S

′(θτ,u)
]

p→ 0, (36)

where the notation is understood to indicate convergence of the matrices element by element.

Proof. See Proof of Theorem 4 in the Supplementary Materials.
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4 Application

In this section, we consider data from the Survey on Household Income and Wealth (SHIW) 2016

conducted by the Bank of Italy to show the relevance of our methodology. We analyze the impact of

economic and socio-demographic factors on households wealth and consumption levels, accounting

both for the presence of outliers and the correlation structure between the two outcomes. We are

interested in evaluating whether these effects are more pronounced on more disadvantaged families

than on richer ones. In this setting, the limitation of using a conditional (M-)quantile model is that

the effect of the covariates at different quantile levels may be masked by the set of conditioning

variables, i.e., the characteristics of the family. Once we have conditioned on the explanatory

variables, for instance, the 10-th (M-)quantile of the unconditional distribution of the responses

may potentially be very different from the 10-th (M-)quantile of the conditional distribution, so the

coefficients of conditional (M-)quantile regression cannot be interpreted as unconditional effects.

On the other hand, by using our unconditional method, the UMQPE provides an estimate of the

impact of covariates across the entire population and not merely among population subgroups,

consisting of families who share the same values of the included covariates. In what follows, we

fit the proposed regression method at different points of the unconditional distributions of family

wealth and consumption, and illustrate the difference between the conditional and unconditional

approaches.

4.1 Data description

The SHIW (https://www.bancaditalia.it) is an annual survey conducted by the Bank of Italy

whose aims are to provide information on the economic and financial behaviours of Italian house-

holds and collect reliable, comparable and representative data of the population resident in Italy.

This survey is widely regarded as the basis of the most reliable estimates for macroeconomics
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studies. The sample is drawn in two stages, the primary and secondary sampling units are mu-

nicipalities and households, respectively. Before the primary units are selected, they are stratified

by region and population size. Data are collected mainly via an electronic questionnaire using the

Computer Assisted Personal Interviewing program while the remaining interviews are conducted

using the Paper And Pencil Personal Interviewing program.

In this work, following established custom we transform the dependent variables, i.e., household

consumption (LCON) and net wealth (LWEA) to natural logarithm. In particular, LCON is

defined as the sum of household’s expenditure on durables and non-durable goods while net wealth

is obtained as the algebraic sum of real assets, financial assets and financial liabilities. The set

of considered predictors includes the log of net disposable income (LINC), defined as the sum of

payroll income, pensions, net transfers, net self-employment income and property income sources,

and relevant information on the household’s head such as age (Age) and age squared (Age2)

measured in years. Also, gender (male (baseline)), marital (married (baseline), never married,

separated, widowed), employment status (employee (baseline), self-employed, not-employed) and

educational level (elementary (baseline), middle, vocational, high school, university or higher) are

included as dummy variables. Finally, a categorical variable is included to investigate the presence

of regional divergences in wealth and consumption levels depending on the region of residence (north

(baseline), centre, south and islands). Table S7 in the Supplementary Materials summarizes the

descriptive statistics of the included variables. The considered sample contains 6802 households.

As a preliminary step, we study the unconditional distributions of households wealth and con-

sumption. The histograms of LWEA and LCON unconditional distributions in Figure S5 of the

Supplementary Materials reveal that, while normality seems tenable for LCON, there are po-

tentially influential observations in the distribution of LWEA and indicate a departure from the

Gaussian assumption, having fat tails and pronounced asymmetries. Furthermore, the empirical

correlation between LCON and LWEA equals to 0.473. As expected, consumption and wealth
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are positively correlated, justifying the need for a multivariate approach that considers these two

dimensions together. The discreteness of LWEA that shows up especially at low values of wealth

is due to the rounding effect of the interviews towards round figures (Groves et al. 2011). Con-

sequently, the presented unconditional regression model is appropriate to account for outlying

observations and investigate how the relationship between responses and explanatory variables can

vary across the unconditional distribution of family wealth and consumption.

4.2 Modeling household wealth and consumption

We analyze the SHIW 2016 data to jointly model households’ log-wealth, LWEA, and log-consumption,

LCON, as a function of the predictors in Table S7. We fit the proposed approach at levels τ = 0.10,

τ = 0.50 and τ = 0.90, which can estimated by simply noting that for τ ∈ (0, 1
2
], θ1−τ,u = θτ,−u

(see Kokic et al. 2002). As explained in Section 3, a meaningful direction u shall be determined

for ordering multivariate observations, taking into account the problem under consideration. A

possible way to do this is to observe that ratios of the type Z = log
(

Y
u1
1

Y
−u2
2

)
= u′(log Y1, log Y2)

bears great importance in several fields like finance, economics and growth models, with Y1 and

Y2 representing wealth and consumption at the household level, respectively. In order to explicitly

account for the existing positive correlation between wealth and consumption, we use the direction

u = ( 1√
2
, 1√

2
)′ throughout the rest of the section (the analysis with u = ( 1√

2
,− 1√

2
)′ is shown in the

Supplementary Materials). To give a graphical intuition on the use of such direction, Figure S6 in

the Supplementary Materials shows the scatter plots of family wealth and consumption where u

is represented by the green arrow, while the blue points denote the multivariate quantile θτ,u with

c = 0 at τ = 0.10 (left) and τ = 0.90 (left) as an example. The black dashed lines correspond to

the hyperplanes orthogonal to u and passing through θτ,u where datapoints in the upper half-plane

are shown in red while those in the lower half-plane are shown in gray. In doing so, the sample

space is divided into two regions by the hyperplane orthogonal to the selected direction and any
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observation in the region in direction u from θτ,u receives a certain weight, while observations in

the opposite direction receive a different weight depending both on their length and the angle they

form with u, according to the weighting function ηδ(ϕ) below (7). In particular, at τ = 0.10, house-

holds below the half-plane generally have low or moderate levels of consumption and wealth, and

a certain weight will be assigned to them compared to wealthier and high spender families located

in the other region. When τ = 0.90, the multivariate quantile shifts upwards to the right and thus

also the separating hyperplane so that it distinguishes families with jointly high consumption and

wealth patterns who will be weighted differently than all those below as shown in gray.

The estimation of the optimal tuning constant c⋆ is obtained using a 5-fold cross-validation over

a sequence of 200 possible values as described in Section 3.1. The results are reported in Table 1

(c = c⋆) where we compare the proposed unconditional regression with the standard conditional re-

gression approach. In particular, the left-hand side columns (labeled as Unconditional Regression)

refer to the estimates of the UMQPE, ατ,u, obtained as described in (21). Conversely, the right-

hand columns (labeled as Conditional Regression) refer to the estimates of the coefficients β̃τ,u of

a multivariate linear conditional M-quantile regression, i.e., θτ,u(x) = β̃
′
τ,ux, obtained using the

IRLS algorithm mentioned in Section 3. To display the sampling variation, asymptotic standard

errors obtained using the results in Section 3.2 are presented in parentheses. Parameter estimates

are displayed in boldface when significant at the standard 5% level.

The main findings can be summarised as follows. The selected values of c are 1.373, 10.966 and

10.378 at level 0.10, 0.50 and 0.90, respectively. This implies that the estimates are close to the

quantile case at τ = 0.10 as more than 77% of residuals are down-weighted (Huberised) meanwhile,

at τ = 0.50 and τ = 0.90 correspond to expectile estimation as no observations are Huberised.

The estimated values for c reflect the negatively skewed distribution of wealth and support the

exploratory analysis in Figure S5.

Because the selected values of c lead towards expectile estimation, especially above τ = 0.50, we
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also consider the case c = 0 (see Table S8 of the Supplementary Materials) which allows us to

estimate the impact of the covariates on the unconditional multivariate quantiles of the response.

Comparing Tables 1 and S8, slight differences in terms of estimation can be found. This is at-

tributable to the choice of c as the two models allow to target different population parameters

by selecting different values for the tuning constant of the Huber function. The above points

demonstrate the flexibility of the methodology proposed to extend the classical OLS regression for

assessing the effect of covariates, not only at the center, but also at different parts of the uncondi-

tional distribution of interest.

Nevertheless, there are still similar results between Tables 1 and S8. Point estimates generally in-

crease in magnitude when moving outward from the bulk of the data. Income elasticity is positively

associated with both wealth and consumption for all investigated τ levels. One can see that there

are small differences in consumption expenditure among males and females. Moreover, education,

marital and employment status are important determinants of family’s consumption and wealth

levels, with an increasing trend as τ → 0. There also appears to be significant regional disparities

across the distributions of the responses as southern regions and islands generally have lower levels

of wealth and consumption. It is important to note that the effect of education and marital status

between the conditional and unconditional models is very different, especially at c = 0. As shown

in Theorem 1, this corresponds to the case where large differences exist between the UMQPE and

the CMQPE. This may be due to the fact that the matching, sτ,u(X), and weighting, Wτ,u(X),

functions vary across the values of X, which means that the conditional effects do not average up

to their respective unconditional effects. By contrast, the conditional and unconditional models

provide similar estimates for LINC, age and employment status at c = c⋆ in particular, suggest-

ing that sτ,u(X) ≈ τ does not vary very much for all values of X. In this case, we have that

ατ,u = E[Wτ,u(X)αsτ,u(X),u(X)] ≈ E[Wτ,u(X)ατ,u(X)]. Under the considered linear model tar-

geting the conditional multivariate M-quantile θτ,u(x), the CMQPE, ατ,u(x) = β̃τ,u, which implies
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that ατ,u ≈ β̃τ,u.

As a means of further comparison, we analyze the log-levels of wealth and consumption with the

UQR of Firpo et al. (2009) by fitting two univariate models independently. Table S9 of the Sup-

plementary Materials reports the corresponding parameter estimates and standard errors at the

examined τ levels. We can observe that the results are generally in line with the estimates from

the proposed multivariate unconditional quantile regression in Table S8. However, some differ-

ences can be identified at τ = 0.10 due to the selected direction u and the fact that the univariate

UQR completely disregards the dependence between wealth and consumption. By contrast, the

proposed model allows to study the direction and magnitude of such correlation at different levels

τ . In particular, using (13) we represent in Tables 1 and S8 the estimated correlation coefficient,

r12, which indicates that consumption and wealth are strongly correlated with each other and this

association slightly decreases for households at the upper end of the responses distribution. At

τ = 0.10, the estimated coefficients (0.324 and 0.308) suggest that low-consumption households

are likely to be accompanied by low wealth, with an increasing pattern as we move towards the

τ = 0.50 and τ = 0.90 levels.

We conclude the analysis by using the nonparametric estimator of the UMQPE described in Sec-

tion 3.1 to take into account possible nonlinear effects of the covariates. That is, we model the

E[RIF (Y; θτ,u) | X] including cubic B-splines specified for income and age. To test the linearity

assumption between the RIF and the covariates, we conduct a goodness-of-fit test based on the

Pillai’s Trace test statistic (Rencher and Christensen 2012, see Table S11 in the Supplementary

Materials). The results provides evidence that the model with B-splines fits better than the lin-

ear specification for the RIF regression. In Table 2 we thus show the estimated UMQPEs using

the nonparametric method at τ = 0.10, τ = 0.50 and τ = 0.90 for the optimal tuning constant

c⋆, where 95% confidence intervals (in parentheses) are obtained via nonparametric bootstrap

(Efron and Tibshirani 1994). By looking at the results, the estimated UMQPEs are similar, in
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terms of both sign and magnitude, to the estimates in Table 1 where the RIF is modeled as a linear

function of the covariates.

Finally, in Section 6 of the Supplementary Materials we provide a graphical representation of

how well the considered approach can approximate the effect of more general changes in distribution

of the covariates such as those contemplated in the policy effect (Firpo et al. 2007).

5 Conclusions

Extending the univariate work of Firpo et al. (2009), this paper proposes a unified approach to

model the entire unconditional distribution of a multivariate response variable in a regression set-

ting. We make several contributions to the literature. First, by employing the multidimensional

Huber’s function in Hampel et al. (2011) we are able to build a comprehensive modeling framework

to estimate multivariate unconditional quantiles, M-quantiles and expectiles, choosing the tuning

constant in an appropriate manner. Second, in contrast to univariate methods, our multivariate

model accounts for the, potentially asymmetric, association structure between the outcome vari-

ables. Third, the proposed methodology is easy to implement through an OLS regression of the RIF

on the explanatory variables. From a theoretical standpoint, we show that the introduced estima-

tors are consistent, asymptotically normal and can be written as a weighted average of conditional

effects. In addition, we propose a data-driven procedure based on cross-validation to select the

optimal tuning constant for estimating the UMQPE and the policy effect. Finally, we contribute

to the empirical literature by analyzing log-levels of wealth and consumption of Italian households

collected in the SHIW 2016 data.

Possible future developments of this work are as follows. First, the independence assumption

in Theorem 1 can be relaxed by introducing in the RIF regression a control function constructed

using instrumental variables to account for endogenous covariates. Second, the extension of this
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result to the case of heteroskedastic errors would be an interesting topic for future research. Lastly,

it would also be interesting the study of the theoretical behavior of the multivariate M-quantile

cross-validated estimator when selecting the tuning constant of the Huber’s influence function.
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Unconditional Regression Conditional Regression

τ 0.10 0.50 0.90 0.10 0.50 0.90

Variable W C W C W C W C W C W C

Intercept −29.370 5.960 −5.701 5.472 −0.514 4.742 −15.840 4.348 −5.701 5.472 0.003 6.156

(1.243) (0.159) (0.390) (0.095) (0.302) (0.188) (0.529) (0.121) (0.389) (0.094) (0.297) (0.122)

LINC 2.976 0.410 1.315 0.435 0.993 0.496 2.156 0.547 1.315 0.435 0.914 0.361

(0.105) (0.016) (0.032) (0.008) (0.025) (0.015) (0.044) (0.010) (0.032) (0.008) (0.025) (0.010)

Sex 0.044 −0.035 0.008 −0.028 −0.001 −0.011 −0.022 −0.037 0.008 −0.028 0.016 −0.030

(0.134) (0.016) (0.045) (0.011) (0.033) (0.017) (0.061) (0.014) (0.045) (0.011) (0.034) (0.014)

Age 0.219 −0.014 0.081 0.001 0.055 0.012 0.096 −0.003 0.081 0.001 0.058 0.007

(0.025) (0.003) (0.008) (0.002) (0.006) (0.003) (0.011) (0.003) (0.008) (0.002) (0.006) (0.003)

Age2 −0.002 0.000 −0.001 −0.000 −0.000 −0.000 −0.001 0.000 −0.001 −0.000 −0.000 −0.000

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Marital status

never married 0.523 −0.130 0.094 −0.152 0.006 −0.158 0.348 −0.101 0.094 −0.152 0.010 −0.175

(0.170) (0.023) (0.056) (0.014) (0.042) (0.021) (0.077) (0.018) (0.056) (0.014) (0.043) (0.018)

separated −0.845 −0.056 −0.303 −0.104 −0.189 −0.141 −0.250 −0.041 −0.303 −0.104 −0.239 −0.156

(0.214) (0.026) (0.071) (0.017) (0.053) (0.027) (0.097) (0.022) (0.071) (0.017) (0.054) (0.022)

widowed 0.408 −0.098 0.067 −0.098 −0.008 −0.084 0.323 −0.029 0.067 −0.098 −0.032 −0.135

(0.191) (0.025) (0.063) (0.015) (0.047) (0.024) (0.086) (0.020) (0.063) (0.015) (0.048) (0.020)

Education level

middle school 0.434 0.125 0.244 0.102 0.173 0.059 0.274 0.085 0.244 0.102 0.204 0.118

(0.174) (0.021) (0.058) (0.014) (0.043) (0.022) (0.079) (0.018) (0.058) (0.014) (0.044) (0.018)

vocational school 0.398 0.133 0.299 0.117 0.278 0.065 0.303 0.064 0.299 0.117 0.296 0.165

(0.242) (0.029) (0.081) (0.020) (0.060) (0.031) (0.110) (0.025) (0.081) (0.020) (0.062) (0.025)

high school 1.006 0.156 0.611 0.189 0.510 0.191 0.550 0.128 0.611 0.189 0.548 0.246

(0.189) (0.024) (0.063) (0.015) (0.047) (0.024) (0.086) (0.020) (0.063) (0.015) (0.048) (0.020)

university 0.518 0.126 0.656 0.276 0.849 0.440 0.429 0.169 0.656 0.276 0.670 0.379

(0.229) (0.028) (0.076) (0.019) (0.057) (0.030) (0.104) (0.024) (0.076) (0.019) (0.058) (0.024)

Employment status

self-employed 1.791 −0.071 0.942 0.032 0.947 0.153 0.842 −0.028 0.942 0.032 0.812 0.066

(0.206) (0.025) (0.068) (0.017) (0.051) (0.027) (0.093) (0.021) (0.068) (0.017) (0.052) (0.021)

not-employed 1.524 −0.001 0.654 0.041 0.575 0.111 0.658 0.021 0.654 0.041 0.582 0.045

(0.180) (0.023) (0.060) (0.015) (0.045) (0.023) (0.082) (0.019) (0.060) (0.015) (0.046) (0.019)

Geographical area

centre 0.681 0.046 0.213 0.024 0.080 −0.001 0.325 0.056 0.213 0.024 0.107 0.005

(0.143) (0.017) (0.048) (0.012) (0.036) (0.018) (0.065) (0.015) (0.048) (0.012) (0.036) (0.015)

south and islands 1.015 −0.073 0.196 −0.102 0.017 −0.100 0.359 −0.055 0.196 −0.102 0.055 −0.154

(0.133) (0.019) (0.044) (0.011) (0.033) (0.017) (0.060) (0.014) (0.044) (0.011) (0.034) (0.014)

r12 0.324 0.473 0.653

Table 1: Unconditional and conditional regression coefficient estimates obtained from the linear specification for the

RIF at the investigated τ levels and direction u = ( 1√
2
,

1√
2
)′, using the optimal tuning constant c = c

⋆. Parameter

estimates are displayed in boldface when significant at the standard 5% level.



Unconditional Regression Conditional Regression

τ 0.10 0.50 0.90 0.10 0.50 0.90

Variable W C W C W C W C W C W C

Intercept −0.107 11.293 7.275 9.798 7.230 7.708 5.450 9.264 7.275 9.798 6.342 9.943

(6.859) (1.449) (1.669) (0.443) (0.874) (1.060) (1.669) (0.443) (1.669) (0.443) (0.766) (0.401)

LINC 3.383 0.463 1.662 0.587 1.416 0.765 2.254 0.551 1.662 0.587 1.340 0.639

(0.343) (0.076) (0.083) (0.034) (0.182) (0.140) (0.083) (0.034) (0.083) (0.034) (0.089) (0.047)

Sex 0.114 −0.017 0.028 −0.023 −0.006 −0.021 −0.006 −0.039 0.028 −0.023 0.042 −0.015

(0.135) (0.016) (0.045) (0.011) (0.033) (0.016) (0.045) (0.011) (0.045) (0.011) (0.037) (0.013)

Age 0.060 0.046 0.112 −0.007 0.096 −0.006 0.223 0.043 0.112 −0.007 −0.024 −0.045

(0.002) (0.000) (0.001) (0.000) (0.000) (0.000) (0.002) (0.000) (0.002) (0.000) (0.002) (0.001)

Marital status

never married 0.634 −0.123 0.202 −0.102 0.152 −0.059 0.342 −0.097 0.202 −0.102 0.119 −0.096

(0.176) (0.022) (0.058) (0.013) (0.038) (0.018) (0.058) (0.013) (0.058) (0.013) (0.046) (0.014)

separated −0.676 −0.029 −0.149 −0.037 −0.003 −0.027 −0.193 −0.039 −0.149 −0.037 −0.079 −0.042

(0.239) (0.028) (0.079) (0.017) (0.052) (0.023) (0.079) (0.017) (0.079) (0.017) (0.063) (0.019)

widowed 0.520 −0.083 0.184 −0.046 0.144 0.012 0.359 −0.022 0.184 −0.046 0.089 −0.052

(0.191) (0.023) (0.061) (0.015) (0.044) (0.021) (0.061) (0.015) (0.061) (0.015) (0.047) (0.017)

Education level

middle school 0.339 0.109 0.193 0.080 0.128 0.031 0.216 0.084 0.193 0.080 0.151 0.077

(0.192) (0.023) (0.062) (0.013) (0.040) (0.016) (0.062) (0.013) (0.062) (0.013) (0.046) (0.015)

vocational school 0.268 0.111 0.234 0.091 0.227 0.036 0.238 0.067 0.234 0.091 0.227 0.120

(0.246) (0.029) (0.082) (0.019) (0.056) (0.026) (0.082) (0.019) (0.082) (0.019) (0.065) (0.024)

high school 0.778 0.122 0.458 0.124 0.347 0.090 0.462 0.123 0.458 0.124 0.387 0.126

(0.192) (0.022) (0.064) (0.015) (0.045) (0.021) (0.064) (0.015) (0.064) (0.015) (0.049) (0.017)

university 0.350 0.125 0.392 0.151 0.444 0.168 0.424 0.154 0.392 0.151 0.333 0.143

(0.212) (0.027) (0.075) (0.019) (0.061) (0.032) (0.075) (0.019) (0.075) (0.019) (0.061) (0.023)

Employment status

self-employed 1.974 −0.016 0.889 −0.005 0.748 0.007 0.932 −0.038 0.889 −0.005 0.794 0.038

(0.178) (0.024) (0.058) (0.018) (0.056) (0.030) (0.058) (0.018) (0.058) (0.018) (0.051) (0.020)

not-employed 1.950 0.070 0.685 0.043 0.437 0.026 0.676 0.032 0.685 0.043 0.617 0.062

(0.230) (0.026) (0.074) (0.016) (0.051) (0.024) (0.074) (0.016) (0.074) (0.016) (0.061) (0.019)

Geographical area

centre 0.681 0.043 0.237 0.036 0.125 0.029 0.301 0.059 0.237 0.036 0.148 0.027

(0.134) (0.014) (0.044) (0.010) (0.034) (0.016) (0.044) (0.010) (0.044) (0.010) (0.035) (0.012)

south and islands 1.181 −0.045 0.299 −0.059 0.117 −0.040 0.353 −0.052 0.299 −0.059 0.194 −0.060

(0.152) (0.019) (0.046) (0.010) (0.030) (0.014) (0.046) (0.010) (0.046) (0.010) (0.037) (0.012)

Table 2: Unconditional and conditional regression coefficient estimates obtained from the nonparametric method

for the RIF at the investigated τ levels and direction u = ( 1√
2
,

1√
2
)′, using the optimal tuning constant c = c

⋆.

Standard errors are computed via nonparametric bootstrap using 1000 resamples and parameter estimates are

displayed in boldface when significant at the standard 5% level.
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