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Abstract

Code smells is the term used to signal certain patterns or structures in
software code that may contain a potential design or architecture prob-
lem, leading to maintainability or other software quality issues. Detecting
code smells early in the software development process helps prevent these
problems and improve the overall software quality. Existing research con-
centrates on the process of collecting and handling dataset, then exploring
the potential of utilizing deep learning models to detect smells, while ig-
noring extensive feature engineering. Though these approaches obtained
promising results, the following issues need to be tackled: (i) extracting both
structural and semantic features from the software units; (ii) mitigating the
effects of imbalanced data distribution on the performance.

In this paper, we propose DeepSmells as a novel approach to code smells
detection. To learn the complex hierarchical representations of the code
fragment, we apply a deep convolutional neural network (CNN). Then, in
order to improve the quality of the context encoding and preserve semantic
information, long short-term memory networks (LSTM) is placed immedi-
ately after the CNN. The final classification is conducted by deep neural
networks with weighted loss function to reduce the impact of skewed data
distribution. We performed an empirical study using the existing code smell
benchmark datasets to assess the performance of our proposed approach,
and compare it with state-of-the-art baselines. The results demonstrate
the effectiveness of our proposed method for all kinds of code smells with
outperformed evaluation metrics in terms of F1 score and MCC.
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1 INTRODUCTION

Fowler [8] initially coined the concept of code smell to indicate quality issues
in code that could be further refactored to improve the maintainability of
software systems. The presence of smells in code mainly comes from short-
cut implementations, temporary workarounds [3], or sub-optimal design
solutions to speed up the software development in the short term (a.k.a
technical debts) [27]. Prior research has shown that while code smells do
not impact the software system’s functionality, they may limit its reusability
and extensibility [26].

The impact of code smell would be reduced by applying a refactoring
process [4], which seeks to reconstruct the internal software structure
without altering its external behavior [8]. The refactoring process consists
of three steps: (i) identifying code smells; (ii) applying adequate refactoring
operations to correct them; and (iii) assuring the preservation of the system’s
functionalities [21]. It is, therefore, essential to identify code smells to
increase the productivity of the software development process. In fact, early
identification of code smell is crucial to lowering the cost of the refactoring
process. Undoubtedly, automated code smell detection is desirable because
manual methods are cumbersome and time-consuming.

A large body of work has been dedicated to detecting smells in source
code. Traditional approaches rely on handcraft software metrics and employ
heuristic evaluations to classify code snippets as smelly and non-smelly [15].
On the one hand, it is challenging to construct the optimal heuristic evalu-
ation manually. On the other hand, using software metrics may lead to a
potential classification bias. Indeed, code fragments with different behav-
iors can use the same metrics but provide a totally different code smell. ML
approaches have been proposed for code smell detection to overcome these
problems [14, 16]. In particular, in the last years, numerous studies applied
deep learning techniques to detect code smells, including artificial neural
networks (ANNs) [10], convolutional neural networks (CNNs) [6, 18, 29], re-
current neural networks (RNNs) [24]. Empirical results have demonstrated
a higher accuracy rate comparing deep learning-based code smell detectors
to classical machine learning approaches. However, there is still space for
improvement. Indeed, most studies have considered source code as text
and applied natural language processing methods to text mining. It is unar-
guable that source code differs from natural language due to the syntax
difference between the two languages. Treating code as text and ignoring
the semantics of underlying structures (e.g., nesting control) in source code
may lead to the risk of not preserving the correct meaning. We believe that
capturing the semantic structures of the source code plays an important
role in detecting code smells.

This paper proposes DeepSmells, a novel approach to code smell detec-
tion built on top of cutting-edge deep learning techniques. First, to learn the
complex hierarchical representations of code fragments, we apply a deep
convolutional neural network (CNN). Unlike other state-of-the-art studies
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that employ word embedding techniques to represent source code identi-
fiers, our work encodes the whole source code by tokenization indexing
before sending it to the 1D-CNN model to learn the structured patterns.
Then, to improve the context encoding quality and preserve semantic infor-
mation, long short-term memory networks (LSTMs) are placed immediately
after the CNN. Deep neural networks conduct the final classification with
a weighted loss function to reduce the impact of skewed data distribution.
We detect four types of code smell, including Complex Method, Complex

Conditional, Feature Envy, and Multifaceted Abstraction using the datasets
curated by Sharma et al. [24].

The main contributions of our work are briefly summarized as follows:
• A code smell detector, namely DeepSmells, built on top of cutting-edge
deep learning techniques to deal with complex hierarchical representa-
tions of code fragments.

• An empirical evaluation using real-world dataset, and comparison with
state-of-the-art baselines.

• The tool developed together with the metadata process in this paper has
been published to facilitate future research.∗

The paper is structured as follows. Section 2 reviews related studies. Sec-
tion 3 presents the proposed approach built on top of deep neural networks.
Section 4 elaborates on the datasets, settings, and metrics used to perform
an empirical evaluation. Section 5 reports and analyzes the experimental
results. Finally, Section 6 concludes the paper.

2 RELATEDWORK

Many studies have been published in the literature on detecting code smells.
Sharma et al. [26] proposed five categories of smell detection methods.
Since our work focuses on code smell detection using machine learning
techniques, we divided the related work into two subsections, i.e.,ML-based

code detection and code smell detection through other techniques.

2.1 ML-based smell detection

These approaches usemachine learning techniques, including Bayesian [16],
Support Vector Machine [14]. Although existing ML-based methods achieve
encouraging prediction performance, they suffer from insufficient feature
extraction, which requires additional research [26]. Therefore, deep learning
techniques have been exploited in recent years to detect code smells. For
example, Hadj-Kacem et al. [10] combined two learning techniques, i.e., deep
auto-encoder and a neural networkwith one hidden layer, to detect four code
smells. The approach has been evaluated using four datasets containing 74
open-source projects. Results show a high accuracy with more than 96% for
precisions, recalls, and F1 scores concerning four code smells. Das et al. [6]
used a convolutional neural network (CNN) to detect two code smells (Brain
Class and Brain Method) using thirty open-source Java projects. Results
show good accuracy for both Brain Class, and Brain Method smells. Liu et
al. [18] employed a text embedding technique (i.e., word2vec) to represent
code fragments before sending them to a CNN model for classification.
The CNN model was utilized to extract essential features and reduce the
dimensionality to boost the performance of the classification task. Zhang et
al. [29] also adopted CNN techniques combined with the Support Vector
Machine (SVM) algorithm to build a code smell detection. Sharma et al. [24]
compared different deep learning techniques, i.e., CNN and RNN, along
with autoencoder models, to detect four code smells (viz. complex method,
complex conditional, feature envy, and multifaceted abstraction). Moreover,
the authors analyzed whether deep learning models obtained from training
in a programming language, i.e., C#, can be transferred to another language,
i.e., Java. Results show that the model performance, i.e., RNN or CNN,
depends on which code smell has to be detected. Concerning the transfer-
learning, results demonstrate that it is feasible.

∗https://github.com/EASE2023-DeepSmells/DeepSmells

2.2 Other approaches

The most common methods are metric-based smell detection which aim to
identify a code smell through a formula combining a set of metrics. The
formula applies filters and uses thresholds for the related metrics [19]. The
metrics values are calculated using a source code model such as an Ab-
stract Syntax Tree (AST) extracted from the source code. Marinescu [20]
defined formulas for ten code smell using differentmetrics in evolving object-
oriented systems. For example, the number of public attributes (NOPA) and
the number of accessor methods (NOAM) metrics are combined to detect
the data class smell, i.e., poor encapsulated classes. Macia et al. [2] identi-
fied smell for aspect-oriented programming based on metrics. The authors
defined formulas for fifteen well-known and new code smells combining
eight metrics and also defined the related thresholds. Moreover, the au-
thors evaluated the smell detection strategies using three applications and
seventeen releases. Vidal et al. [28] proposed a semi-automated approach
to prioritize code smells. Moreover, the authors developed a tool named
SpIRIT to identify ten code smells using well-known detection strategies
where a rule defines the smell through a combination of metrics and related
thresholds [17]. Many approaches have been applied to Java code smell,
but a few investigated dynamic languages such as JavaScript and Python.
For example, Fard and Mesbah [7] proposed a metric-based tool to detect
thirteen JavaScript code smell using static and dynamic source code analysis.
Chen et al. [5] proposed another exciting study to discover code smells in
Python. The authors defined ten code smells and indicated a metric-based
method with three filtering strategies to establish metric thresholds.

Rules/heuristic-based smell detection methods specify rules or heuristics
and leverage to source code model and optionally metrics for detecting
code and principally design smells [22, 27] if rules/heuristics are fulfilled.
Sharma et al. [25] implemented Designite† to detect architectural, design,
and implementation smells. It detects smell for Java and C# souce code and
calculates metrics at different granularities, i.e., method-level, class-level,
project-level, and solution-level. Moha et al. [22] proposed DECOR and
DETEX to extract rule cards from natural text describing a smell using a
defined domain-specific language. An algorithm is then generated from the
rules to detect code and design smell. DETEX detects four design smells
together with fifteen related code smells, and it has been validated using 11
open-source projects. Both metrics-based and rule-based/heuristic methods
are simple to implement. However, the main challenge of these techniques
concerns the definition of metrics with thresholds, and the results vary
significantly among them.

History-based smell detection approaches exploit source code evolution
to detect code smells through a detection model created using the evolved
code [23]. Palomba et al. [23] proposed an approach named Historical
Information for Smell deTection (HIST) to detect five code smells using
evolution code information coming from version control systems. First,
HIST extracts fine-grained changes from source code evolution and then
uses different heuristics techniques depending on the code smell to detect.
The approach has been evaluated to verify its accuracy in terms of precision
and recall using 20 open-source projects concerning a manually-produced
oracle. Results show that HIST’s precision ranges between 72 and 86 percent,
and the recall is between 58 and 100 percent. Fu and Shen [9] proposed
another approach based on history changes of source code to detect three
code smells, i.e., duplicated code, shotgun surgery, and divergent change.
The approach extracts association rules from the change history and then
uses heuristic algorithms to detect the three code smells.

Since only a small number of smells are connected to evolutionary
changes, history-based techniques have a restricted range of applications.
Because of this, history-based approaches cannot identify a source code
item (such as a function or class) that has not necessarily changed over time
to exhibit a smell.

†https://www.designite-tools.com/
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Optimization-based smell detection approaches detect code smells using
optimization algorithms based on calculated metrics. The algorithms can
also use predefined examples to detect code smells. Kessentini et al. [15]
presented an approach that runs in a parallel cooperative manner with
different evolutionary algorithms to detect eight code smells. In particular,
the approach uses two evolutionary algorithms executed in parallel to
generate the best detection rules and detectors. Then a developer can exploit
these rules and detectors to identify code smells on an implemented system.

3 PROPOSED SOLUTION

This section provides the details of our proposed approach for code smell
detection. Before going into the details of the approach, we explain the idea
behind it as follows. A big challenge of code smell detection is that different
smells may be related to the same symptoms. For example, the violation
of the single responsibility principle is the symptom of both Multifaceted

Abstraction and Divergent Change [1]. As a result, a multi-label classification
may not be sensitive for code smell detection. Similar to previous state-of-
the-art studies, we also concentrate on single smell detection, which means
that our proposed model works separately on different smell datasets for
binary classification (i.e., smelly or non-smelly). Otherwise, the reasons for
choosing four code smells (i.e., Complex Method, Complex Conditional,
Feature Envy, and Multifaceted Abstraction) come from the intuitions of
our approach. First, Complex Method and Complex Conditional smells are
related to the implementation complexity. The ability to capture statement
structures through the token-embedding of source code makes it sensitive
to both the Complex Method smell, where nested conditional statements are
frequently present and the Complex Conditional smell, where conditional
expressions are lengthy or complicated. The CNN model is applied to learn
features from various representations of code. Second, the two remaining
smells, Feature Envy and Multifaceted Abstraction, are categorized as design
smells, which tend to concern multiple methods or classes. In this context,
an LSTMmodel that links sequential representations to learn features seems
to work well. We also aim to assess different configurations of LSTM to
investigate their ability to distinguish these smells.

Figure 1 depicts the overall architecture of DeepSmells. We divide the
proposed code smell detector into two components: (i) the first component
combines CNN and LSTM to extract essential features from the input source
code; (ii) the second one, which is based on a fully connected network,
runs as a binary classifier to map feature vectors generated from the first
component to smelly or non-smelly labels. We implemented our proposed
approach using the Pytorch framework.‡ The code smell detection process
consists of four phases as follows.

During the pre-processing phase, we perform various steps on each
dataset including: (i) embedding source code by indexing code tokens; (ii)
computing statistical information about the samples’ length, and removing
samples with a length exceeding one standard deviation from the mean; (iii)
padding samples with the zero value to extend to the longest array input.

Subsequently, in the model-building phase, the pre-processed data is
passed through convolution blocks to extract unique features from the
source code automatically. Typically, many convolution blocks are em-
ployed to progressively learn more complex and abstract features from the
input data, including high-level characteristics such as component relation-
ships within the source code. However, when deeper networks can start
converging, a degradation problem has been exposed: with the network
depth increasing, accuracy gets saturated (which might be unsurprising)
and then degrades rapidly [11]. In this case, two convolution blocks are
utilized, which are configured as given below.
• The first convolution block consists of a 1D-CNN (torch.nn.Conv1d)
with 16 filters with a kernel size 𝑘 which specifies the length of 1D convo-
lution window.We experiment different values of 𝑘 (i.e., 𝑘 = 3, 4, 5, 6, 7) to

‡https://pytorch.org

evaluate the effectiveness of the convolution layer. This layer employs a
ReLU function, and the remaining parameters are kept as defaults. Follow-
ing by a 1D-Batch Normalization (torch.nn.BatchNorm1d) to accelerate
the network training and to reduce internal covariate shift [13]. The
obtained feature map is then passed to a MaxPooling layer (torch.nn-
.MaxPool1d) by a factor of size 3 to reduce the spatial dimension.

• The second convolution block is similar to the first one, excepting that
we use 32 filters.
Once the output from the convolutional neural networks has been ob-

tained, it is fed into the LSTM network to preserve the meaning and context
of the data. The torch.nn.LSTM function is used to configure the LSTM net-
work, with the input size of each LSTM unit being based on the initial size of
the initial embedding source code vector. The number of LSTM units in the
network is also set to 32 to match the 32 filters in the second convolution
block. In addition, we implement BiLSTM to capture long-term dependen-
cies in sequential data that span both forward and backward directions.
BiLSTM consists of two separate layers of LSTM units, one for processing
the input sequence in the forward direction and the other layer for the
backward direction. The hidden state at a time step of the network is the
concatenation of both the forward and backward hidden states, allowing the
hidden states to capture future information. We use the same configuration
as before but set the hyperparameter bidirectional to True.

Finally, the smell classification is performed by a deep neural network
with one hidden layer using the activation function as ReLU. The output
layer of one node uses the Sigmoid as the activation function. The number
of hidden nodes is empirically turned to find the appropriate value for each
dataset. However, when dealing with highly imbalanced data, the model’s
classification becomes biased toward the majority class, while the minority
class is usually of greater importance. During neural network training,
the cost function is the key to adjusting a neural network’s weights to
create a better-fitting machine learning model [12]. Thus, to solve the class
imbalance problem in the dataset, we add sensitive weight into binary
cross-entropy to adjust the importance of the minor class.

𝑐𝑜𝑠𝑡𝑖 = 𝛽𝑦𝑖𝑙𝑜𝑔 (𝑦𝑖 ) + (1 − 𝑦𝑖 )𝑙𝑜𝑔 (1 − 𝑦𝑖 ) (1)

where 𝛽 is the sensitive weight, 𝑦𝑖 is the actual label of input 𝑥𝑖 and 𝑦𝑖 is
the model’s prediction for input 𝑥𝑖 . To determine the optimal weight for
our approach, we employ binary cross-entropy with 𝛽 set to 1, as well as
weighted binary cross-entropy with different weights (𝛽 = 2, 4, 8, 12, 32,
and 84). By comparing the results, we choose the best hyperparameter for
our proposed method.

In the training and testing phase, we trained our model using a mini-
batch size of 128. The learning rate is set to 0.03. The training is done within
50 epochs using the SGD to optimize the weighted loss function.

4 EMPIRICAL SETTINGS

This section presents the evaluation conducted to study the performance
of DeepSmells. Section 4.1 introduces the datasets used in the evaluation.
Afterwards, the metrics are described in Section 4.2. Finally, we elaborate
on the evaluation plan in Section 4.3.

4.1 Benchmark Datasets

We conduct experiments on the datasets curated by Sharma et al. [24]. Ta-
ble 1 presents four code smell datasets including: Complex Method, Complex

Conditional, Feature Envy and Multifaceted Abstraction. The total number
of samples for all datasets is 416, 445 in which the total numbers of smelly

(positive) and non-smelly (negative) instances are 20, 753 and 395, 692, re-
spectively. The average imbalanced rate of all datasets is 5.24%.

The source code is examined at method-level for Complex Method and
Complex Conditional datasets and at class-level for Feature Envy and Multi-

faceted Abstraction datasets. It can be seen that the final dataset,Multifaceted
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Figure 1: The overall DeepSmells architecture.

Table 1: Statistics of the datasets.

Smell Smell Alias # Positive # Negative

Complex Method CM 12,489 144,460
Complex Conditional CC 6,186 149,767
Feature Envy FE 1,788 51,260
Multifaceted Abstraction MA 290 50,205

Abstraction has the lowest number of instances, which might rise challenges
for deep learning models. We split each dataset into training and testing
parts following a ratio of 70-30 (i.e., 70% for training and 30% for testing).

4.2 Evaluation Metrics

In order to evaluate the performance of our model, we employ widely-
used evaluation metrics including Precision (P), Recall (R), F1-Score (F1) and
Matthews Correlation Coefficient (MCC) [24, 26, 29].

4.2.1 Precision, Recall and F1-Score. The confusion matrix is the starting
point to evaluate any classification models with four possible outcomes
including true positive (TP), true negative (TN), false positive (FP) and false

negative (FN).
Precision (P) which measures how many of the positive predictions made

by the model are actually correct, is defined as:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(2)

Recall counts the number of positive cases in the dataset that model can
identify, and it is defined as:

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(3)

Finally, F1-Score represents the balance between precision and recall of
the prediction model and is calculated as follows.

𝐹1 =
2 ∗ 𝑃 ∗ 𝑅
𝑃 + 𝑅

(4)

4.2.2 MCC. This metric is useful when dealing with imbalanced classifi-
cation. It measures the correlation between the predicted class and actual
class which is scaled in the range [−1, 1], where 1 represents a perfect
prediction, and −1 shows a perfect negative correlation, i.e., the worst case.
When MCC is equal to 0, the model shows a random prediction.

𝑀𝐶𝐶 =
𝑇𝑃 ∗𝑇𝑁 − 𝐹𝑃 ∗ 𝐹𝑁√︁

(𝑇𝑃 + 𝐹𝑃 ) (𝑇𝑃 + 𝐹𝑁 ) (𝑇𝑁 + 𝐹𝑃 ) (𝑇𝑁 + 𝐹𝑁 )
(5)

4.3 Evaluation Plan

We compare the effectiveness of DeepSmells with three baseline models
which have been introduced in a recent work of Sharma et al. [24]. They

have investigated the efficiency of different variants of an auto-encoder
model to detect code smells. The objective of an auto-encoder is to compress
the source code and to learn salient information which is reflected in the
reconstructed output [24]. Three architectures of auto-encoder have been
studied and showed promising results, as follows.
• AE-Dense: The auto-encoder model employed denses for encoder and
decoder layers

• AE-CNN: The auto-encoder model employed two CNN networks, the
first one for encoder and the other for decoder

• AE-LSTM: Similar to AE-CNN but the CNNs are replaced by LSTM net-
works

The encoder and decoder layers are followed by a fully connected dense
layer for classification. Different from their work, we aim to learn various
code representations to understand patterns of both smelly and non-smelly
samples through different convolutional filters and try to capture the se-
mantic context through LSTM networks. We re-run all of these models on
the same benchmark datasets (see Section 4.1) to compare to our model. In
this paper, we aim to answer to the following research questions:
• RQ1: How do different DeepSmells configurations affect the prediction

performance? Among the considered network configurations, we study
to find the one that brings the best prediction performance for detecting
code smells.

• RQ2: How does DeepSmells perform compared to the baseline models? We
evaluate howwell our proposed approach perform in comparison to three
aforementioned baseline models.

5 RESULTS AND DISCUSSION

We present and analyze the experimental findings in order to respond to
two research questions introduced in the previous section.

5.1 RQ1: How do different DeepSmells

configurations affect the prediction

performance?

Our focus is to evaluate the efficiency of different network configurations
with respect to the code smell prediction performance.

5.1.1 The effect of the convolution layers. The objective of the convolution
layers is to learn the hierarchical representation within the source code.
We then first investigate how the kernel size affects the capability to learn
the local patterns of source code. For experimentation, we have considered
various values for the kernel size of both convolution layers. In particular,
we consider 5 scenarios in which the kernel size of each filter are adjusted
to 3, 4, 5, 6 and 7, respectively. As can be seen in Figure 2, the proposed
model attains the highest F1-Score and MCC measures with regard to the
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Figure 2: The impact of kernel size on the performance of

DeepSmells.

kernel size as 4 for the CM smell and 5, 6, 7 for the CC, FE and MA smells,
respectively.

5.1.2 The effect of variant LSTM networks. Next, we evaluate the impact of
two variants of LSTM model, uni-directional LSTM (that we call LSTM) and
bi-directional LSTM (i.e., Bi-LSTM), on the performance of our proposed
approach. Different to uni-directional LSTM architecture which allows to
maintain long-range connections along a sequence of source code frag-
ments, the bi-directional architecture takes into account the flow of inputs
in both directions, leading to the capability to utilize information from both
sides. Table 2 shows the performance of DeepSmells considering two ar-
chitectures of LSTM. We run the experiments with the same configuration
of CNN and DNN blocks (as described in Section 4).

Table 2: Comparison between the two LSTM architectures.

Smell Model

Metric

P R F1 MCC

CM

DeepSmells 0.7313 0.7786 0.7542 0.7341

DeepSmells-BiLSTM 0.7062 0.7599 0.7321 0.7104

CC

DeepSmells 0.5749 0.6042 0.5892 0.5684
DeepSmells-BiLSTM 0.5927 0.5959 0.5943 0.5731

FE

DeepSmells 0.3414 0.2581 0.2940 0.2686

DeepSmells-BiLSTM 0.3414 0.2334 0.2773 0.2520

MA

DeepSmells 0.2874 0.2717 0.2793 0.2752

DeepSmells-BiLSTM 0.3097 0.2345 0.2669 0.2402

It is evident that regarding the three metrics including Recall, F1-Score
and MCC, DeepSmells with LSTM performed slightly better than BiLSTM
with respect to two smells, Complex Method and Feature Envy. In particular,
for the CM code smell, DeepSmells with LSTM achieved a significant im-
provement of 8.68% in terms of recall, comparing to BiLSTM. The situation
is totally different when dealing with two smells, Complex Conditional (CC)
and Multifaceted Abstraction (MA). DeepSmells with BiLSTM outperforms
LSTM in terms of recall, F1-Score and MCC. However, the LSTM model
offers a better precision for two smells, CC and MA, but lower precision for
two others, CM and FE, in comparison to BiLSTM.

5.1.3 The effect of the imbalanced weight. We finally investigate the impact
of the imbalanced weight 𝛽 (see Equation 1) on the prediction performance
of DeepSmells. Figure 3 shows the performance of DeepSmells for seven

Figure 3: The impact of imbalanced weight on the perfor-

mance of DeepSmells.

values of 𝛽 , i.e., 𝛽 = {1, 2, 4, 8, 12, 32, 84}, with respect to four measures
and four code smells. Considering the CM smell, given 𝛽 = 4, DeepSmells
achieves the best performance on recall, F1-Score and MCC. Regarding the
CC smell, 𝛽 = 12 gives the highest values for F1-Score and MCC. For the
two remaining smells, FE and MA, the proposed model obtains the best
performance in terms of F1-Score and MCC when 𝛽 = 32. This may be
due to their higher degree of imbalance comparing to the two first smells.
Indeed, the proportion between positive and negative samples of CM, CC,
FE and MA is 8.65%, 4.13%, 3.49%, 0.58%, respectively. In a nutshell, the
empirical findings show that the more skewed the distribution is, the higher
is the imbalance weight.

5.2 RQ2: How does DeepSmells perform

compared to the baseline models?

We conducted a performance comparison between our proposed approach
and three baselines models presented in Section 4.3, including AE-Dense,
AE-CNN and AE-LSTM. Table 3 shows the experimental results for each
kind of smell. The table demonstrates that our proposed model outperforms
the other models by all evaluation metrics. In particular, regarding the
CM smell, DeepSmells yields an improvement of 13.50% and 14.69% with
regards to F1-Score and MCC, respectively, in comparison with AE-Dense
that is the best baseline model for this type of smell [24]. Furthermore, for
the CC smell, our proposed model significantly outperformed AE-Dense by
increasing accordingly about 37.19%, 0.67%, 13.50% and 14.69% on the value
of precision, recall, F1-Score andMCC. However, considering the FE andMA
smells, the situation is slightly different, i.e., the comparison between AE-
CNN and DeepSmells shows diverse results. While DeepSmells achieves
higher F1-Score and MCC values by 3.15% and 0.83%, respectively, the recall
of AE-CNN is 28.04% better. Similarly, for the MA smell, the precision value
is superior, but the recall value is much lower due to the high imbalance
of this dataset, leading to a lower overall performance in terms of MCC,
approximately 9.5%, compared to DeepSmells. Overall, we can see that

DeepSmells gains a superior prediction performance compared to the baselines

by all the four types of code smells.

5.3 Threats to validity

• Internal validity. This is related to the degree to which our evaluation
resembles real-world scenarios. In the evaluation, we adopted existing
datasets [24] manually curated and classified by humans. The quality
of the curated data depends very much on the evaluators’ expertise.
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Table 3: Comparison with state-of-the-art baselines.

Smell Model

Metric

P R F1 MCC

CM

AE-Dense 0.4834 0.6304 0.5472 0.5077
AE-CNN 0.4721 0.5815 0.5211 0.4781
AE-LSTM 0.4683 0.6146 0.5316 0.4905
DeepSmells 0.7313 0.7786 0.7542 0.7341

CC

AE-Dense 0.1703 0.3874 0.2366 0.2108
AE-CNN 0.1940 0.2759 0.2278 0.1933
AE-LSTM 0.1797 0.3287 0.2324 0.2007
DeepSmells 0.5749 0.6042 0.5892 0.5684

FE

AE-Dense 0.1703 0.3874 0.2366 0.2108
AE-CNN 0.1572 0.4925 0.2384 0.2352
AE-LSTM 0.1968 0.2537 0.2217 0.1968
DeepSmells 0.3414 0.2581 0.2940 0.2686

MA

AE-Dense 0.0314 0.7471 0.0603 0.1351
AE-CNN 0.0312 0.6782 0.0596 0.1272
AE-LSTM 0.0328 0.4023 0.0606 0.0985
DeepSmells 0.2874 0.2717 0.2793 0.2752

We anticipate that comments might be miss-classified, thus negatively
impacting the overall prediction performance.

• External validity. This concerns the generalizability of the findings
beyond the scope of this study. We attempted to mitigate the threats
by evaluating with different experimental configurations to simulate
real-world scenarios. The findings of our work might apply only to the
considered datasets. For other datasets, we need additional empirical
evidence before reaching a final conclusion.

• Construct validity. This is related to the experimental settings to com-
pare DeepSmells with the baselines. Attempting to mitigate the threats,
we simulated a real-world scenario where the systems are about to pro-
vide predictions based on the available labeled code smells. To guarantee
a reliable comparison with the baselines, we used the original implemen-
tations made by their authors, leaving the internal design intact.

6 CONCLUSION AND FUTUREWORK

We proposed DeepSmells as a practical solution to code smells detection
exploiting different deep learning techniques. An empirical evaluation on
real-world datasets demonstrated the effectiveness of our proposed ap-
proach. We also proved that DeepSmells is more effective in classifying
code smells compared to well-established baselines. For future work, we plan
to improve the prediction engine by incorporating different deep learning
techniques. We anticipate that the application of CodeBERT–a pre-trained
model on sourcecode–may help boost up the overall effectiveness.
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