In this paper, we propose a multivariate quantile regression framework to forecast Value at Risk (VaR) and Expected Shortfall (ES) of multiple financial assets simultaneously, extending Taylor (2019). We generalize the Multivariate Asymmetric Laplace (MAL) joint quantile regression of Petrella and Raponi (2019) to a time-varying setting, which allows us to specify a dynamic process for the evolution of both the VaR and ES of each asset. The proposed methodology accounts for the dependence structure among asset returns. By exploiting the properties of the MAL distribution, we propose a new portfolio optimization method that minimizes portfolio risk and controls for well-known characteristics of financial data. We evaluate the advantages of the proposed approach on both simulated and real data, using weekly returns on three major stock market indices. We show that our method outperforms other existing models and provides more accurate risk measure forecasts than univariate methods.
Forecasting VaR and ES using a joint quantile regression and its implications in portfolio allocation
	
	
	
		
		
		
		
		
	
	
	
	
	
	
	
	
		
		
		
		
		
			
			
			
		
		
		
		
			
			
				
				
					
					
					
					
						
							
						
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
			
			
				
				
					
					
					
					
						
						
							
							
						
					
				
				
				
				
				
				
				
				
				
				
				
			
			
		
		
		
		
	
Luca Merlo
;
	
		
		
	
			2021-01-01
Abstract
In this paper, we propose a multivariate quantile regression framework to forecast Value at Risk (VaR) and Expected Shortfall (ES) of multiple financial assets simultaneously, extending Taylor (2019). We generalize the Multivariate Asymmetric Laplace (MAL) joint quantile regression of Petrella and Raponi (2019) to a time-varying setting, which allows us to specify a dynamic process for the evolution of both the VaR and ES of each asset. The proposed methodology accounts for the dependence structure among asset returns. By exploiting the properties of the MAL distribution, we propose a new portfolio optimization method that minimizes portfolio risk and controls for well-known characteristics of financial data. We evaluate the advantages of the proposed approach on both simulated and real data, using weekly returns on three major stock market indices. We show that our method outperforms other existing models and provides more accurate risk measure forecasts than univariate methods.| File | Dimensione | Formato | |
|---|---|---|---|
| Forecasting VaR and ES using a joint quantile regression and implications in portfolio allocation.pdf accesso aperto 
											Descrizione: Versione in Pre-print
										 
											Tipologia:
											Documento in Pre-print
										 
											Licenza:
											
											
												Creative commons
												
												
													
													
													
												
												
											
										 
										Dimensione
										3.78 MB
									 
										Formato
										Adobe PDF
									 | 3.78 MB | Adobe PDF | Visualizza/Apri | 
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
