The role of oxidative stress (OS) in male infertility as a primary etiology and/or concomitant cause in other situations, such as inflammation, varicocele and gonadotoxin effects, is well documented. While reactive oxygen species (ROS) are implicated in many important roles, from spermatogenesis to fertilization, epigenetic mechanisms which are transmissible to offspring have also recently been described. The present review is focused on the dual aspects of ROS, which are regulated by a delicate equilibrium with antioxidants due to the special frailty of spermatozoa, in continuum from physiological condition to OS. When the ROS production is excessive, OS ensues and is amplified by a chain of events leading to damage of lipids, proteins and DNA, ultimately causing infertility and/or precocious pregnancy termination. After a description of positive ROS actions and of vulnerability of spermatozoa due to specific maturative and structural characteristics, we linger on the total antioxidant capacity (TAC) of seminal plasma, which is a measure of non-enzymatic non-proteic antioxidants, due to its importance as a biomarker of the redox status of semen; the therapeutic implications of these mechanism play a key role in the personalized approach to male infertility.

The Dual Role of Oxidants in Male (In)fertility: Every ROSe Has a Thorn

Silvestrini, Andrea
2023-01-01

Abstract

The role of oxidative stress (OS) in male infertility as a primary etiology and/or concomitant cause in other situations, such as inflammation, varicocele and gonadotoxin effects, is well documented. While reactive oxygen species (ROS) are implicated in many important roles, from spermatogenesis to fertilization, epigenetic mechanisms which are transmissible to offspring have also recently been described. The present review is focused on the dual aspects of ROS, which are regulated by a delicate equilibrium with antioxidants due to the special frailty of spermatozoa, in continuum from physiological condition to OS. When the ROS production is excessive, OS ensues and is amplified by a chain of events leading to damage of lipids, proteins and DNA, ultimately causing infertility and/or precocious pregnancy termination. After a description of positive ROS actions and of vulnerability of spermatozoa due to specific maturative and structural characteristics, we linger on the total antioxidant capacity (TAC) of seminal plasma, which is a measure of non-enzymatic non-proteic antioxidants, due to its importance as a biomarker of the redox status of semen; the therapeutic implications of these mechanism play a key role in the personalized approach to male infertility.
2023
oxidative stress
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.14092/7455
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
social impact