Thoracic aortic aneurysms (TAA) pathogenesis and progression include many mechanisms. The authors investigated the role of autophagy, oxidative stress, and endothelial dysfunction in 36 TAA patients and 23 control patients. Univariable and multivariable analyses were performed. TAA patients displayed higher oxidative stress and endothelial dysfunction then control patients. Autophagy in the TAA group was reduced. The association of oxidative stress and autophagy with aortic disease supports the role of these processes in TAA. The authors demonstrate a putative role of Nox2 and autophagy dysregulation in human TAA. These findings could pinpoint novel treatment targets to prevent or limit TAA progression.
Role of oxidative stress and autophagy in thoracic aortic aneurysms
Leonardo Schirone;Ernesto Greco;
2021-01-01
Abstract
Thoracic aortic aneurysms (TAA) pathogenesis and progression include many mechanisms. The authors investigated the role of autophagy, oxidative stress, and endothelial dysfunction in 36 TAA patients and 23 control patients. Univariable and multivariable analyses were performed. TAA patients displayed higher oxidative stress and endothelial dysfunction then control patients. Autophagy in the TAA group was reduced. The association of oxidative stress and autophagy with aortic disease supports the role of these processes in TAA. The authors demonstrate a putative role of Nox2 and autophagy dysregulation in human TAA. These findings could pinpoint novel treatment targets to prevent or limit TAA progression.File | Dimensione | Formato | |
---|---|---|---|
Irace_Role-Oxidative-Stress_2021.pdf
non disponibili
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.